
FUNDAMENTAL OF PYTHON & SHELL SCRIPT

CLASS-VI

1

Instructor: Palash Gupta

2

Re-Cap

• Design a Spark Cluster

• Key Procedure Setting up a cluster

• Configuring a Cluster

• Basic Administration

• Under practically how spark works

3

What we are going to Cover today?

• Introduction to Python

• Practical Session with Python

• Installing & utilizing New Python Package

• Introduction to UNIX and Shell

• Practical Session with Shell Scripting

• Running a python script in UNIX Cron Job

with Shell Script Support

4

Python Programming

5

Introduction to Python

❑What is Python?

-Python is a high level language

-Python is Interpreted and Interactive

-Python supports both object oriented & functional

❑History of Python?

-It was created by Guido van Rossum (BDFL) during 1985- 1990. Like Perl

-Python source code is also available under the GNU General Public License (GPL).

-Python is named after a TV Show called ‘Monty Python’s Flying Circus’ and not after Python-the

snake.

-Python 1.0 is released on January 1994

-Python 2.0 released (2.7) on October 16, 2000 [Garbage collector, Unicode]

-Python 3.0 released (3.5.2) on December, 2008

6

Features of Python

❑ Features of Python?

-Easy to learn

-Easy to maintain

-Easy to read

-Interactive Mode

-Portable

-Extendable

-Database Interfaces

-GUI Programming

-Scalable

-Supports automatic garbage collection

-Can be integrated with C, C++, COM, Java etc.

7

Difference between Python 2 and 3?

Python-2 Python-3

print function brackets optional print() function brackets mandatory

Prefix string with u to make Unicode string String is Unicode by default

Division of integer always returns integer -> 7 / 2

= 3

Division of integer may return float -> 7 / 2 = 3.5

raw_input() reads string raw_input() is not available

input() evaluates data read input() always read string

py2to3 utility

print x, # Trailing comma suppresses newline in

Python 2

print(x, end=" ") # Appends a space instead of a

newline in Python 3

8

Environment Setup

❑ Download Python from the link: https://www.python.org/downloads/windows/ OR use given

Windows EXE.

❑ You can take Windows x86 executable installer

Note: In order to install Python 3.5.2, minimum OS requirements are Windows 7 with SP1. For versions

3.0 to 3.4.x Windows XP is acceptable.

❑ Setting Path at Windows

-To add the Python directory to the path for a particular session in Windows

- Right Click on My PC/Computer -> Properties -> Advance System Settings -> Environment Variable -

> Edit Path and Add following python directory

- Note:

- C:\Users\User\AppData\Local\Programs\Python\Python35-32 is our python directory

- C:\Users\User\AppData\Local\Programs\Python\Python35-32\Scripts

- We can also setup PYTHONPATH

https://www.python.org/downloads/windows/

9

Running Python Script

There are three different ways to start Python −

1. Interactive Interpreter

You can start Python from Unix, DOS, or any other system that provides you a command-line

interpreter or shell window.

Enter python the command line.

Start coding right away in the interactive interpreter.

python [In Linux/UNIX]

C:> python

2. Using a python script

python test.py

C:> python test.py

3. Using a IDE – We will use Pycharm in our lab

10

UNIX Shell Scripting

11

What is an Operating System?

An operating system (OS), in its most general sense, is software that

allows a user to run other applications on a computing device. While it is

possible for a software application to interface directly with hardware, the

vast majority of applications are written for an OS, which allows them to

take advantage of common libraries and not worry about specific

hardware details. The operating system manages a computer's hardware

resources, including:

• Input devices such as a keyboard and mouse

• Output devices such as display monitors, printers and scanners

• Network devices such as modems, routers and network connections

• Storage devices such as internal and external drives

• The OS also provides services to facilitate the efficient execution and

management of, and memory allocations for, any additional installed

software application programs

Example of Operating Systems are Windows, Linux, Android, MAC etc.

12

UNIX History & Overview

History:

❑ UNIX was developed by Bell Labs of AT&T and AT&T versions including version 7, System III, System V

❑ The most widespread version is BSD 4.1 and BSD 4.2 versions developed in University of California

❑ Now-a-days the free open source UNIX kernel is LINUX kernel

Time Table:

❑ After AT&T had dropped out of the Multics project, the Unix operating system was conceived and

implemented by Ken Thompson and Dennis Ritchie (both of AT&T Bell Laboratories) in 1969 and first

released in 1970

❑ The history of Linux began in 1991 with the commencement of a personal project

by Finnish student Linus Torvalds to create a new free operating system kernel. Since then, the

resulting Linux kernel has been marked by constant growth throughout its history. Since the initial release

of its source code in 1991, it has grown from a small number of C files under a license prohibiting

commercial distribution to the 4.15 version in 2018 with more than 23.3 million lines of source code

without comments[1] under the GNU General Public License

https://en.wikipedia.org/wiki/AT%26T
https://en.wikipedia.org/wiki/Multics
https://en.wikipedia.org/wiki/Unix
https://en.wikipedia.org/wiki/Ken_Thompson
https://en.wikipedia.org/wiki/Dennis_Ritchie
https://en.wikipedia.org/wiki/AT%26T_Bell_Laboratories
https://en.wikipedia.org/wiki/Finland
https://en.wikipedia.org/wiki/Linus_Torvalds
https://en.wikipedia.org/wiki/Linux_kernel
https://en.wikipedia.org/wiki/Source_code
https://en.wikipedia.org/wiki/C_Programming_Language
https://en.wikipedia.org/wiki/History_of_Linux#cite_note-1
https://en.wikipedia.org/wiki/GNU_General_Public_License

13

UNIX History & Overview

UNIX Overview questions in mind?

• What is UNIX really like?

• What are the shell and the kernel?

• How does the system keep track of your files?

• What actually happens when you type a command name?

What does Kernel do?

This provides basic-level control over all of the computer

hardware devices. Main roles include reading data from

memory and writing data to memory, processing execution

orders, allocating resources to users, determining how data is

received and sent by devices such as the monitor, keyboard and

mouse, and determining how to interpret data received from

networks.

14

UNIX History & Overview

Let’s take an example:
• The Kernel controls computer hardware

• When you log in, it is the kernel that runs init and getty to

check to see if you are an authorized user and have the

correct password.

• The kernel keeps track of all the various program being run,

allocating time to each, which one stops and which ones to

starts etc. (Time sharing)

• The kernel assign storage and runs the shell programs

In Reality Kernel is made

with a group of System Calls

and a command is basically

one or more system calls

What does Shell do?

Users generally don’t interact with Kernel, hence it is duty for

shell to take inputs from user and transfer it to kernel for

proper execution. There are different types of shell:

• Bourne (/bin/sh)

• Bash (/bin/bash)

• C (/bin/csh)

• Korn (bin/ksh)

15

UNIX History & Overview

Let’s understand File & File System:
• A file is a series of bytes – can be interpreted differently

• In UNIX system, everything is handled through a file

• A file can be a part of directory of sub-directory

• A file is known by his inode Number & it contains where the

file is written in disk, start and end location, permissions, last

modified data, creation data etc.

• Missing things within inode is: content of file and name of file

Soft and Hard Link of a File

$ ls –i file_name

7689 file_name

16

Let’s understand File & File System:
• What happen if a disk or a part of disk is set aside to store

files and the inodes entries. The entire functional unit is

referred a file system.

• The chunk of memory is divided into number of blocks e.g.

512 byte, 4096 bytes or 8192 bytes etc. based on kernel

settings.

• $ # blockdev --getbsz /dev/sda1

512

It means the file system block size is 512 KB

• Three types of blockings:

-The first group consists of block 1 and is called super block

-The second group consists of blocks devoted to inodes

-The third and final block is to store files

• A disk can have multiple file systems e.g. xfs, ext2, ext3,

ext4 etc.

• $ more /etc/fstab

UNIX History & Overview

17

Why UNIX is better mostly in Server Side?

Why UNIX is better?

• Open source nature

• Secure

• Can revive older computers

• Perfect for programmers

• Software Updates

• Customizations

• Variety of distributions

• Free to Use

• Better Community Support

• Reliability

• Privacy

Better Community Support

18

Basic UNIX Commands

Listing files and directories

Making Directories

Changing to a different directory

The directories . and ..

Pathnames

~ (your home directory)

Copying Files

Moving files

Removing files and directories

Displaying the contents of a file on the screen (clear, cat, head, tail)

Searching the contents of a file (less and /, grep, wc)

Redirection

Redirecting the Output

Redirecting the Input

Pipes

Wildcards

19

Basic UNIX Commands

Getting Help

File system security (access rights)

Changing access rights

Processes and Jobs

Listing suspended and background processes

Killing a process

Other useful UNIX commands (df, du, compress, gzip, unzip, history, file)

20

Shell Scripting Overview

A shell script can contain one more UNIX commands & it can contact various logics to automate user

jobs.

$ cat < simple.sh

echo “this is my first shell script”

date

Ctrl+D

$chmod u+x simple.sh

$./simple.sh

A detail can be done as part of our lab

21

Shell Scripting Overview Contd.

SN Key Item Process

1 Value of a variable $variable

2 Input, output, error Input – 0 $cat < a.txt

Output – 1

echo “Hello…” > a.txt #Overwrite

echo “Hello…” >> a.txt #Append

Error – 2

<Command> > out 2>&1

3 Value of nth positional parameter $n

4 Total number of positional parameter $#

5 Command Substitute `Command`

6 Common Shell Variable $HOME, $LOGNAME, $HOSTNAME $PATH

etc.

7 Showing all Shell Environment Variable export

8 Set a Shell Environment Variable export HADOOP_HOME=“/home/hadoop”

22

Shell Scripting Overview Contd.

SN Key Item Process

9 Running a command in background <command> &

10 Piping cat /proc/cpuinfo | grep 'core id' | wc –l

11 List of all positional parameter $*

12 Exist Status of last command $?

13 The process (PID) of current shell $$

14 Quoting ‘’ or “”

15 Comment #

16 Set a variable a=30

23

Scheduling a Shell Script

Scheduling:

Crontab is a powerful utility to schedule any job in

an UNIX machine.

$ crontab –l

$ crontab –e

If we want to run a job daily at 03:00PM then the

entry shall be look like:

00 15 * * * /path/our_script > /tmp/log.txt

24

Running Python within UNIX Shell Scripting

25

Scheduling python program within shell script

QUESTION & ANSWER

THANKS FOR ATTENDING THE CLASS & YOUR CO-OPERATION

26

27

References

• https://www.python.org/

• https://www.tutorialspoint.com/index.htm

• https://www.shellscript.sh/functions.html

• https://www.guru99.com/introduction-to-shell-scripting.html

https://www.python.org/
https://www.tutorialspoint.com/index.htm
https://www.shellscript.sh/functions.html
https://www.guru99.com/introduction-to-shell-scripting.html

