
UNDERSTANDING HADOOP HDFS
& 

MAPREDUCE

CLASS-II

1

Instructor: Palash Gupta



2

Re-Cap

Hello Everyone!

Last Week, we went through fundamental of Big Data & Hadoop. 

• Introduction

• What is Big Data?

• How big is Big Data?

• What are we trying to solve?

• Types of Data Structure

• Hadoop System Principle

• History of Hadoop

• Comparison with RDBMS

• Hadoop Eco System

• Hadoop Distribution

• Supported OS and HW



3

What we are going to Cover today?

• HDFS Concept

• HDFS Architecture

• Introduction to Map Reduce

• Working Procedure of Map 

Reduce



4

Introduction to Hadoop

Hadoop

HDFS MapReduce

Hadoop includes two main functions:

❑ HDFS

❑ MapReduce

❖ HDFS:

-Hadoop distributed file system

-It is used to store large data set in a distributed environment using 

commodity machine

-HDFS implementation is modeled after GFS, Google Distributed File 

system, thus you can read the first paper on this, to be found here: 

http://labs.google.com/papers/gfs.html.

❖ MapReduce:

-This is distributing computing framework

-It is used to compute large data set using a distributed framework to 

reduce the latency while using cost effective method



5

HDFS Concept

❑ Assumptions and Goals
-Hardware Failure: Detection of faults and quick, 

automatic recovery from them is a core architectural goal 

of HDFS.

-Streaming Data Access: HDFS is designed more for batch 

processing rather than interactive use by users. The 

emphasis is on high throughput of data access rather than 

low latency of data access.

-Large Data Sets: HDFS is tuned to support large files. It 

should provide high aggregate data bandwidth and scale 

to hundreds of nodes in a single cluster.

-Simple Coherency Model: HDFS applications need a 

write-once-read-many access model for files. A file once 

created, written, and closed need not be changed.

-Moving Computation is Cheaper than Moving Data: A 

computation requested by an application is much more 

efficient if it is executed near the data it operates on. 

-Portability Across Heterogeneous Hardware and 

Software Platforms



6

HDFS Architecture

❑ Name Nodes

-HDFS has a master/slave architecture. An HDFS cluster consists of 

a single NameNode, a master server that manages the file system 

namespace and regulates access to files by clients

-The NameNode executes file system namespace operations like 

opening, closing, and renaming files and directories. 

-It also determines the mapping of blocks to DataNodes.

-NameNode stores the Metadata, this consists of fsimage and 

editlog.

Fsimage:

This contained serialized form of all directory and file in the file 

System.The FsImage is stored as a file in the NameNode’s local file 

system.

Edit Log:

This is a transaction log, which logs every change in the file system.

❑ Data Nodes

-There are a number of DataNodes, usually one per node in the 

cluster, which manage storage attached to the nodes that they run 

on

-A User file is split into one or more blocks and these blocks are 

stored in a set of DataNodes

-The DataNodes are responsible for serving read and write 

requests from the file system’s clients. 

-The DataNodes also perform block creation, deletion, and 

replication upon instruction from the NameNode.

Name Node

Data Node-1 Data Node-2 Data Node-N

TCP/IP

Application

ClientProtocol

DataNodeProtocol

1. Heart beat

2. Block report

1. FsImage

2. Edit Log



7

HDFS Architecture: Read Operation

Name Node

HDFS Client

HDFS

Open Read Close

Get Block Location

Send Block Location

Data 

Node-1

Data 

Node-2

Data 

Node-3

Read Block 

(FileDataInputStream)

• A read operation in general 

composition of many system call 

named Open, read and Close. 

• The HDFS client start requesting 

Distributed File System to open 

the file and it started looking 

respective block information from 

Name Node. 

• As soon as the information is 

retrieved, HDFS request block 

read operation to respective 

Data Nodes using 

FileDataInputStream. 

• Finally it closes the steam of 

reding a file. 



8

HDFS Architecture: Write Operation

Name Node

HDFS Client

HDFS

Create Write Close

Create

Complete

Data 

Node-1

Data 

Node-2

Data 

Node-3

Write Block 

(DFSOutputStream)

• A client initiates write operation by 

calling 'create()' method of 

DistributedFileSystem object which 

creates a new file - Step no. 1 in the 

above diagram.

• DistributedFileSystem object connects to 

the NameNode using RPC call and 

initiates new file creation. However, this 

file creates operation does not associate 

any blocks with the file. It is the 

responsibility of NameNode to verify 

that the file (which is being created) does 

not exist already and a client has correct 

permissions to create a new file. If a file 

already exists or client does not have 

sufficient permission to create a new file, 

then IOException is thrown to the client. 

Otherwise, the operation succeeds and a 

new record for the file is created by the 

NameNode.

• Once a new record in NameNode is 

created, an object of type 

FSDataOutputStream is returned to the 

client. A client uses it to write data into 

the HDFS DataNode as per Replication 

Factor.

RF = 3



9

HDFS Architecture Contd.: HDFS Data Replication

64 MB

64 MB

2 MB

❑ HDFS is designed to reliably store very large 

files across machines in a large cluster.

❑ I have a 130MB file, Now how it can be 

distributed in a HDFS file system

❖ Name Node: 

-Will split the file based on block size

-Default block size is 64 MB

-All will be equal size block except the last one

-Distribute all data blocks to all Datanode

-Instruct for block replication based on replication 

factor configuration e.g. Consider the replication 

factor is 2.

❖ Data Node: 

-Write block to file system based on Name Node 

instruction

My TXT File

Name Node

Data 

Node-1

Data 

Node-2

Data 

Node-3

B-1 B-1B-2B-2 B-3 B-3

B-1

B-2

B-3

A Typical HDFS Cluster



10

HDFS Architecture Contd.: HDFS Sizing

Daily data input 100 GB Storage space used by daily data 

input = daily data input * replication 

factor = 300 GB
HDFS replication factor 3

Monthly growth 5% Monthly volume = (300 * 30) + 5% 

= 9450 GB

After one year = 9450 * (1 + 

0.05)^12 = 16971 GB

Intermediate MapReduce data 25% Dedicated space = HDD size * (1 -

Non HDFS reserved space per disk / 

100 + Intermediate MapReduce data 

/ 100)

= 4 * (1 - (0.25 + 0.30)) = 1.8 TB 

(which is the node capacity)

Non HDFS reserved space per disk 30%

Size of a hard drive disk 4 TB

Number of DataNodes needed to process:

Whole first month data = 9.450 / 1800 ~= 6 nodes

The 12th month data = 16.971/ 1800 ~= 10 nodes

Whole year data = 157.938 / 1800 ~= 88 nodes



11

HDFS Architecture Contd.: HDFS Sizing

NameNode memory 2 GB - 4 GB Memory amount = HDFS cluster 

management memory + NameNode 

memory + OS memory
Secondary NameNode memory 2 GB - 4 GB

OS memory 4 GB - 8 GB

HDFS memory 2 GB - 8 GB

At least NameNode (Secondary NameNode) memory = 2 + 2 + 4 = 8 GB

DataNode process memory 4 GB - 8 GB Memory amount = Memory per CPU 

core * number of CPU's core + 

DataNode process memory + 

DataNode TaskTracker memory + 

OS memory

DataNode TaskTracker memory 4 GB - 8 GB

OS memory 4 GB - 8 GB

CPU's core number 4+

Memory per CPU core 4 GB - 8 GB

At least DataNode memory = 4*4 + 4 + 4 + 4 = 28 GB

❖ CPU: Multi-

Core CPU with 

at lest four 

Cores per 

Physical CPU. 

❖ Network: High 

throughput 10 

GB ethernet 

intra Rack. 



12

HDFS Architecture: HDFS Access & Limitations

❑ HDFS Limitations

-HDFS does not yet implement user quotas

-HDFS does not support hard links or soft links

-Write once Read multiple times

- Name node is still a single instance

Action Command

Create a directory named /foodir bin/hadoop dfs -mkdir 

/foodir

Remove a directory named /foodir bin/hadoop dfs -rmr 

/foodir

View the contents of a file 

named /foodir/myfile.txt

bin/hadoop dfs -cat 

/foodir/myfile.txt

Action Command

Put the cluster in Safemode bin/hadoop dfsadmin -

safemode enter

Generate a list of DataNodes bin/hadoop dfsadmin -

report

Recommission or decommission 

DataNode(s)

bin/hadoop dfsadmin -

refreshNodes

❑ HDFS Access



13

❑ Hadoop MapReduce is the data processing layer of 

Hadoop. It processes large structured and 

unstructured data stored in HDFS. MapReduce also 

processes a huge amount of data in parallel. It does 

this by dividing the job (submitted job) into a set of 

independent tasks (sub-job). In Hadoop, MapReduce 

works by breaking the processing into phases: Map 

and Reduce.

▪ Map – It is the first phase of processing, where 

we specify all the complex logic code.

▪ Reduce – It is the second phase of processing. 

Here we specify light-weight processing like 

aggregation/summation.

MapReduce Architecture



14

MapReduce Architecture Contd.

Master
Job Tracker

Task Tracker

Slave Node-1
Task Tracker

Slave Node-2
Task Tracker

Slave Node-N
Task Tracker

TCP/IP

Application❑ Master Node

- The master node allows you to conduct parallel 

processing of data using Hadoop MapReduce.

-It assigns & manage the task to Slave node. 

❑ Slave Node

-The slave nodes are the additional machines in the 

Hadoop cluster which allows you to store data to 

conduct complex calculations. 

- All the slave node comes with Task Tracker and a 

DataNode. This allows you to synchronize the 

processes with the NameNode and Job Tracker 

respectively.



15

Working Procedure of MapReduce

Nabil Khwaja Mehedi Mahbaur Mehedi Tansif

Ponsuge Mithun Dupthok Tshering

Prakash Lakshman Palden

Saran Shaksham Anu Sharad

John Kevin Michael Rother

Upul Vindula Viraj Thilini

John Kevin Ponsuge Mithun Dupthok Tshering

Khwaja Mehedi Mahbaur

Prakash Lakshman Palden

Shaksham Anu Sharad

a.txt

Word Count

Problem

Traditional

1. (Nabil,1), (Khwaja,1) (Mehedi,1) (Mahbaur,1) (Mehedi,1) (Tansif,1)

2. (Ponsuge,1) (Mithun,1) (Dupthok,1) (Tshering,1)

3. (Prakash,1) (Lakshman,1) (Palden,1)

4. (Saran,1) (Shaksham,1) (Anu,1) (Sharad,1)

6. (Upul,1) (Vindula,1) (Viraj,1) (Thilini,1)

7. (John,2) (Kevin,2) (Ponsuge,2) (Mithun,2) (Dupthok,2) (Tshering,2)

8. (Khwaja,2) (Mehedi,2) (Mahbaur,2)

9. (Prakash,2) (Lakshman,2) (Palden,2)

10. (Shaksham,2) (Anu,2) (Sharad,2) 

5. (John,1) (Kevin,1) (Michael,1) (Rother,1)

What happen if the file size is 

100 GB?



16

Working Procedure of MapReduce Contd. 

Master
Job Tracker

Slave Node-1
Task Tracker

Slave Node-2
Task Tracker

Slave Node-3
Task Tracker

65001 Port LISTEN

Input: Receive 

Task with one 

line of words

Output: Send 

Word key 

and value 

pair. 

65001 Port LISTEN

With Same Process

65001 Port LISTEN

With Same Process

65005 Port LISTEN

Input: 

Complete File 

with multiple 

lines

Output: Split 

per line, 

assign to 

Slave and 

Aggerate 

Results

a.txt

What are concern yet?

- Problem description is fixed

- What if one slave node is down

- What if one slave node is taking exceptional 

time to process

Nabil Khwaja Mehedi Mahbaur Mehedi 

Tansif

Ponsuge Mithun Dupthok Tshering

Prakash Lakshman Palden

Saran Shaksham Anu Sharad

John Kevin Michael Rother

Upul Vindula Viraj Thilini

John Kevin Ponsuge Mithun Dupthok

Tshering

Khwaja Mehedi Mahbaur

Prakash Lakshman Palden

Shaksham Anu Sharad



17

Working Procedure of MapReduce Contd.

❑Hadoop MapReduce is a software framework for 

easily writing applications which process vast 

amounts of data (multi-terabyte data-sets) in-

parallel on large clusters (thousands of nodes) of 

commodity hardware in a reliable, fault-tolerant 

manner.

❑A MapReduce job usually splits the input data-set 

into independent chunks which are processed by 

the map tasks in a completely parallel manner. 

The framework sorts the outputs of the maps, 

which are then input to the reduce tasks. Typically 

both the input and the output of the job are 

stored in a file-system. The framework takes care 

of scheduling tasks, monitoring them and re-

executes the failed tasks.

❑Typically the compute nodes and the storage 

nodes are the same, that is, the MapReduce 

framework and the Hadoop Distributed File 

System are running on the same set of nodes. This 

configuration allows the framework to effectively 

schedule tasks on the nodes where data is 

already present, resulting in very high 

aggregate bandwidth across the cluster.

Understanding with an Example



18

❑ The MapReduce framework consists of a single 

master JobTracker and one slave TaskTracker per 

cluster-node. The master is responsible for scheduling 

the jobs' component tasks on the slaves, monitoring 

them and re-executing the failed tasks. The slaves 

execute the tasks as directed by the master.

❑ Minimally, applications specify the input/output 

locations and supply map and reduce functions via 

implementations of appropriate interfaces and/or 

abstract-classes. These, and other job parameters, 

comprise the job configuration. The Hadoop job 

client then submits the job (jar/executable etc.) and 

configuration to the JobTracker which then assumes 

the responsibility of distributing the 

software/configuration to the slaves, scheduling tasks 

and monitoring them, providing status and diagnostic 

information to the job-client.

❑ Although the Hadoop framework is implemented in 

JavaTM, MapReduce applications need not be written 

in Java always.

Working Procedure of MapReduce Contd. 

What if there is a Node Failure?



QUESTION & ANSWER

THANKS FOR ATTENDING THE CLASS & YOUR CO-OPERATION

19



20

References

• https://www.forbes.com/sites/bernardmarr/2018/05/21/how-much-data-do-we-create-

every-day-the-mind-blowing-stats-everyone-should-read/

• http://elephantscale.com/

• https://www.hadoop.apache.org

• https://www.guru99.com/

• https://techvidvan.com/tutorials

• https://www.tutorialspoint.com/

• https://hadoop.apache.org/docs/r3.2.0/hadoop-mapreduce-client/hadoop-mapreduce-

client-core/MapReduceTutorial.html

https://www.forbes.com/sites/bernardmarr/2018/05/21/how-much-data-do-we-create-every-day-the-mind-blowing-stats-everyone-should-read/
http://elephantscale.com/
http://www.hadoop.apache.org/
https://www.guru99.com/
https://techvidvan.com/tutorials
https://www.tutorialspoint.com/
https://hadoop.apache.org/docs/r3.2.0/hadoop-mapreduce-client/hadoop-mapreduce-client-core/MapReduceTutorial.html

