
Big Data & Hadoop Hands On Training Material

This copy is only provided to DLE-4 Course trainee | info@fountainit.com.bd

Python Tutorial
(Credit goes to www.tutorialspoint.com)

First Python Program
Let us execute the programs in different modes of programming.

Interactive Mode Programming

Invoking the interpreter without passing a script file as a parameter brings up the

following prompt −

$ python

Python 3.3.2 (default, Dec 10 2013, 11:35:01)

[GCC 4.6.3] on Linux

Type "help", "copyright", "credits", or "license" for more information.

>>>

On Windows:

Python 3.4.3 (v3.4.3:9b73f1c3e601, Feb 24 2015, 22:43:06) [MSC v.1600 32 bit (Intel)] on win32

Type "copyright", "credits" or "license()" for more information.

>>>

Type the following text at the Python prompt and press Enter −

>>> print ("Hello, Python!")

If you are running the older version of Python (Python 2.x), use of parenthesis

as inprint function is optional. This produces the following result −

Hello, Python!

mailto:info@fountainit.com.bd

Big Data & Hadoop Hands On Training Material

This copy is only provided to DLE-4 Course trainee | info@fountainit.com.bd

Script Mode Programming

Invoking the interpreter with a script parameter begins execution of the script and

continues until the script is finished. When the script is finished, the interpreter is no longer

active.

Let us write a simple Python program in a script. Python files have the extension .py.

Type the following source code in a test.py file −

print ("Hello, Python!")

We assume that you have the Python interpreter set in PATH variable. Now, try to run

this program as follows −

On Linux

$ python test.py

This produces the following result −

Hello, Python!

On Windows

C:\Python34>Python test.py

This produces the following result −

Hello, Python!

Let us try another way to execute a Python script in Linux. Here is the modified test.py

file −

#!/usr/bin/python3

print ("Hello, Python!")

We assume that you have Python interpreter available in the /usr/bin directory. Now,

try to run this program as follows −

$ chmod +x test.py # This is to make file executable

$./test.py

This produces the following result −

mailto:info@fountainit.com.bd

Big Data & Hadoop Hands On Training Material

This copy is only provided to DLE-4 Course trainee | info@fountainit.com.bd

Hello, Python!

Python Identifiers
A Python identifier is a name used to identify a variable, function, class, module or other

object. An identifier starts with a letter A to Z or a to z or an underscore (_) followed by

zero or more letters, underscores and digits (0 to 9).

Python does not allow punctuation characters such as @, $, and % within identifiers.

Python is a case sensitive programming language. Thus, Manpower and manpower are

two different identifiers in Python.

Here are naming conventions for Python identifiers −

• Class names start with an uppercase letter. All other identifiers start with a lowercase letter.

• Starting an identifier with a single leading underscore indicates that the identifier is private.

• Starting an identifier with two leading underscores indicates a strong private identifier.

• If the identifier also ends with two trailing underscores, the identifier is a language-defined

special name.

Reserved Words
The following list shows the Python keywords. These are reserved words and you cannot

use them as constants or variables or any other identifier names. All the Python keywords

contain lowercase letters only.

and exec not

as finally or

assert for pass

break from print

class global raise

continue if return

mailto:info@fountainit.com.bd

Big Data & Hadoop Hands On Training Material

This copy is only provided to DLE-4 Course trainee | info@fountainit.com.bd

def import try

del in while

elif is with

else lambda yield

except

Lines and Indentation
Python does not use braces({}) to indicate blocks of code for class and function definitions

or flow control. Blocks of code are denoted by line indentation, which is rigidly enforced.

The number of spaces in the indentation is variable, but all statements within the block

must be indented the same amount. For example −

if True:

print ("True")

else:

print ("False")

However, the following block generates an error −

if True:

print ("Answer")

print ("True")

else:

print ("Answer")

print ("False")

mailto:info@fountainit.com.bd

Big Data & Hadoop Hands On Training Material

This copy is only provided to DLE-4 Course trainee | info@fountainit.com.bd

Thus, in Python all the continuous lines indented with the same number of spaces would

form a block. The following example has various statement blocks −

Note − Do not try to understand the logic at this point of time. Just make sure you

understood the various blocks even if they are without braces.

#!/usr/bin/python3

import sys

try:

 # open file stream

 file = open(file_name, "w")

except IOError:

 print ("There was an error writing to", file_name)

 sys.exit()

print ("Enter '", file_finish,)

print "' When finished"

while file_text != file_finish:

 file_text = raw_input("Enter text: ")

 if file_text == file_finish:

 # close the file

 file.close

 break

 file.write(file_text)

 file.write("\n")

file.close()

file_name = input("Enter filename: ")

if len(file_name) == 0:

mailto:info@fountainit.com.bd

Big Data & Hadoop Hands On Training Material

This copy is only provided to DLE-4 Course trainee | info@fountainit.com.bd

 print ("Next time please enter something")

 sys.exit()

try:

 file = open(file_name, "r")

except IOError:

 print ("There was an error reading file")

 sys.exit()

file_text = file.read()

file.close()

print (file_text)

Multi-Line Statements
Statements in Python typically end with a new line. Python, however, allows the use of the

line continuation character (\) to denote that the line should continue. For example −

total = item_one + \

 item_two + \

 item_three

The statements contained within the [], {}, or () brackets do not need to use the line

continuation character. For example −

days = ['Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday']

Quotation in Python
Python accepts single ('), double (") and triple (''' or """) quotes to denote string literals, as

long as the same type of quote starts and ends the string.

The triple quotes are used to span the string across multiple lines. For example, all the

following are legal −

word = 'word'

mailto:info@fountainit.com.bd

Big Data & Hadoop Hands On Training Material

This copy is only provided to DLE-4 Course trainee | info@fountainit.com.bd

sentence = "This is a sentence."

paragraph = """This is a paragraph. It is

made up of multiple lines and sentences."""

Comments in Python
A hash sign (#) that is not inside a string literal is the beginning of a comment. All

characters after the #, up to the end of the physical line, are part of the comment and

the Python interpreter ignores them.

#!/usr/bin/python3

First comment

print ("Hello, Python!") # second comment

This produces the following result −

Hello, Python!

You can type a comment on the same line after a statement or expression −

name = "Madisetti" # This is again comment

Python does not have multiple-line commenting feature. You have to comment each line

individually as follows −

This is a comment.

This is a comment, too.

This is a comment, too.

I said that already.

Using Blank Lines
A line containing only whitespace, possibly with a comment, is known as a blank line and

Python totally ignores it.

In an interactive interpreter session, you must enter an empty physical line to terminate a

multiline statement.

mailto:info@fountainit.com.bd

Big Data & Hadoop Hands On Training Material

This copy is only provided to DLE-4 Course trainee | info@fountainit.com.bd

Waiting for the User
The following line of the program displays the prompt and, the statement saying “Press

the enter key to exit”, and then waits for the user to take action −

#!/usr/bin/python3

input("\n\nPress the enter key to exit.")

Here, "\n\n" is used to create two new lines before displaying the actual line. Once the

user presses the key, the program ends. This is a nice trick to keep a console window

open until the user is done with an application.

Multiple Statements on a Single Line
The semicolon (;) allows multiple statements on a single line given that no statement

starts a new code block. Here is a sample snip using the semicolon −

import sys; x = 'foo'; sys.stdout.write(x + '\n')

Multiple Statement Groups as Suites
Groups of individual statements, which make a single code block are called suites in

Python. Compound or complex statements, such as if, while, def, and class require a

header line and a suite.

Header lines begin the statement (with the keyword) and terminate with a colon (:) and

are followed by one or more lines which make up the suite. For example −

if expression :

 suite

elif expression :

 suite

else :

 suite

Command Line Arguments

mailto:info@fountainit.com.bd

Big Data & Hadoop Hands On Training Material

This copy is only provided to DLE-4 Course trainee | info@fountainit.com.bd

Many programs can be run to provide you with some basic information about how they

should be run. Python enables you to do this with -h −

$ python -h

usage: python [option] ... [-c cmd | -m mod | file | -] [arg] ...

Options and arguments (and corresponding environment variables):

-c cmd : program passed in as string (terminates option list)

-d : debug output from parser (also PYTHONDEBUG=x)

-E : ignore environment variables (such as PYTHONPATH)

-h : print this help message and exit

[etc.]

You can also program your script in such a way that it should accept various

options. Command Line Arguments is an advanced topic. Let us understand it.

Python Variables
Variables are nothing but reserved memory locations to store values. It means that when

you create a variable, you reserve some space in the memory.

Based on the data type of a variable, the interpreter allocates memory and decides

what can be stored in the reserved memory. Therefore, by assigning different data types

to the variables, you can store integers, decimals or characters in these variables.

Assigning Values to Variables
Python variables do not need explicit declaration to reserve memory space. The

declaration happens automatically when you assign a value to a variable. The equal sign

(=) is used to assign values to variables.

The operand to the left of the = operator is the name of the variable and the operand to

the right of the = operator is the value stored in the variable. For example −

#!/usr/bin/python3

mailto:info@fountainit.com.bd
https://www.tutorialspoint.com/python3/python_command_line_arguments.htm

Big Data & Hadoop Hands On Training Material

This copy is only provided to DLE-4 Course trainee | info@fountainit.com.bd

counter = 100 # An integer assignment

miles = 1000.0 # A floating point

name = "John" # A string

print (counter)

print (miles)

print (name)

Here, 100, 1000.0 and "John" are the values assigned to counter, miles, and name

variables, respectively. This produces the following result −

100
1000.0
John

Multiple Assignment
Python allows you to assign a single value to several variables simultaneously.

For example −

a = b = c = 1

Here, an integer object is created with the value 1, and all the three variables are

assigned to the same memory location. You can also assign multiple objects to multiple

variables. For example −

 a, b, c = 1, 2, "john"

Here, two integer objects with values 1 and 2 are assigned to the variables a and b

respectively, and one string object with the value "john" is assigned to the variable c.

Standard Data Types
The data stored in memory can be of many types. For example, a person's age is stored

as a numeric value and his or her address is stored as alphanumeric characters. Python

has various standard data types that are used to define the operations possible on them

and the storage method for each of them.

Python has five standard data types −

• Numbers

• String

mailto:info@fountainit.com.bd

Big Data & Hadoop Hands On Training Material

This copy is only provided to DLE-4 Course trainee | info@fountainit.com.bd

• List

• Tuple

• Dictionary

Python Numbers
Number data types store numeric values. Number objects are created when you assign a

value to them. For example −

var1 = 1
var2 = 10

You can also delete the reference to a number object by using the delstatement. The

syntax of the del statement is −

del var1[,var2[,var3[....,varN]]]]

You can delete a single object or multiple objects by using the del statement.

For example −

del var
del var_a, var_b

Python supports three different numerical types −

• int (signed integers)

• float (floating point real values)

• complex (complex numbers)

All integers in Python3 are represented as long integers. Hence, there is no separate

number type as long.

Examples

Here are some examples of numbers −

int float complex

10 0.0 3.14j

100 15.20 45.j

-786 -21.9 9.322e-36j

mailto:info@fountainit.com.bd
https://www.tutorialspoint.com/python3/python_numbers.htm

Big Data & Hadoop Hands On Training Material

This copy is only provided to DLE-4 Course trainee | info@fountainit.com.bd

080 32.3+e18 .876j

-0490 -90. -.6545+0J

-0x260 -32.54e100 3e+26J

0x69 70.2-E12 4.53e-7j

A complex number consists of an ordered pair of real floating-point numbers denoted by

x + yj, where x and y are real numbers and j is the imaginary unit.

Python Strings
Strings in Python are identified as a contiguous set of characters represented in the

quotation marks. Python allows either pair of single or double quotes. Subsets of strings

can be taken using the slice operator ([] and [:]) with indexes starting at 0 in the

beginning of the string and working their way from -1 to the end.

The plus (+) sign is the string concatenation operator and the asterisk (*) is the repetition

operator. For example −

#!/usr/bin/python3

str = 'Hello World!'

print (str) # Prints complete string

print (str[0]) # Prints first character of the string

print (str[2:5]) # Prints characters starting from 3rd to 5th

print (str[2:]) # Prints string starting from 3rd character

print (str * 2) # Prints string two times

print (str + "TEST") # Prints concatenated string

This will produce the following result −

Hello World!
H

mailto:info@fountainit.com.bd
https://www.tutorialspoint.com/python3/python_strings.htm

Big Data & Hadoop Hands On Training Material

This copy is only provided to DLE-4 Course trainee | info@fountainit.com.bd

llo
llo World!
Hello World!Hello World!
Hello World!TEST

Python Lists
Lists are the most versatile of Python's compound data types. A list contains items

separated by commas and enclosed within square brackets ([]). To some extent, lists are

similar to arrays in C. One of the differences between them is that all the items belonging

to a list can be of different data type.

The values stored in a list can be accessed using the slice operator ([] and [:]) with

indexes starting at 0 in the beginning of the list and working their way to end -1. The

plus (+) sign is the list concatenation operator, and the asterisk (*) is the repetition

operator. For example −

#!/usr/bin/python3

list = ['abcd', 786 , 2.23, 'john', 70.2]

tinylist = [123, 'john']

print (list) # Prints complete list

print (list[0]) # Prints first element of the list

print (list[1:3]) # Prints elements starting from 2nd till 3rd

print (list[2:]) # Prints elements starting from 3rd element

print (tinylist * 2) # Prints list two times

print (list + tinylist) # Prints concatenated lists

This produces the following result −

['abcd', 786, 2.23, 'john', 70.200000000000003]
abcd
[786, 2.23]
[2.23, 'john', 70.200000000000003]
[123, 'john', 123, 'john']
['abcd', 786, 2.23, 'john', 70.200000000000003, 123, 'john']

Python Tuples

mailto:info@fountainit.com.bd
https://www.tutorialspoint.com/python3/python_lists.htm
https://www.tutorialspoint.com/python3/python_tuples.htm

Big Data & Hadoop Hands On Training Material

This copy is only provided to DLE-4 Course trainee | info@fountainit.com.bd

A tuple is another sequence data type that is similar to the list. A tuple consists of a

number of values separated by commas. Unlike lists, however, tuples are enclosed within

parenthesis.

The main difference between lists and tuples are − Lists are enclosed in brackets ([])

and their elements and size can be changed, while tuples are enclosed in parentheses ((

)) and cannot be updated. Tuples can be thought of as read-only lists. For example −

#!/usr/bin/python3

tuple = ('abcd', 786 , 2.23, 'john', 70.2)

tinytuple = (123, 'john')

print (tuple) # Prints complete tuple

print (tuple[0]) # Prints first element of the tuple

print (tuple[1:3]) # Prints elements starting from 2nd till 3rd

print (tuple[2:]) # Prints elements starting from 3rd element

print (tinytuple * 2) # Prints tuple two times

print (tuple + tinytuple) # Prints concatenated tuple

This produces the following result −

('abcd', 786, 2.23, 'john', 70.200000000000003)
abcd
(786, 2.23)
(2.23, 'john', 70.200000000000003)
(123, 'john', 123, 'john')
('abcd', 786, 2.23, 'john', 70.200000000000003, 123, 'john')

The following code is invalid with tuple, because we attempted to update a tuple, which

is not allowed. Similar case is possible with lists −

#!/usr/bin/python3

tuple = ('abcd', 786 , 2.23, 'john', 70.2)

list = ['abcd', 786 , 2.23, 'john', 70.2]

tuple[2] = 1000 # Invalid syntax with tuple

mailto:info@fountainit.com.bd

Big Data & Hadoop Hands On Training Material

This copy is only provided to DLE-4 Course trainee | info@fountainit.com.bd

list[2] = 1000 # Valid syntax with list

Python Dictionary
Python's dictionaries are kind of hash-table type. They work like associative arrays or

hashes found in Perl and consist of key-value pairs. A dictionary key can be almost any

Python type, but are usually numbers or strings. Values, on the other hand, can be any

arbitrary Python object.

Dictionaries are enclosed by curly braces ({ }) and values can be assigned and accessed

using square braces ([]). For example −

#!/usr/bin/python3

dict = {}

dict['one'] = "This is one"

dict[2] = "This is two"

tinydict = {'name': 'john','code':6734, 'dept': 'sales'}

print (dict['one']) # Prints value for 'one' key

print (dict[2]) # Prints value for 2 key

print (tinydict) # Prints complete dictionary

print (tinydict.keys()) # Prints all the keys

print (tinydict.values()) # Prints all the values

This produces the following result −

This is one
This is two
{'name': 'john', 'dept': 'sales', 'code': 6734}
dict_keys(['name', 'dept', 'code'])
dict_values(['john', 'sales', 6734])

Dictionaries have no concept of order among the elements. It is incorrect to say that the

elements are "out of order"; they are simply unordered.

Data Type Conversion

mailto:info@fountainit.com.bd
https://www.tutorialspoint.com/python3/python_dictionary.htm

Big Data & Hadoop Hands On Training Material

This copy is only provided to DLE-4 Course trainee | info@fountainit.com.bd

Sometimes, you may need to perform conversions between the built-in types. To convert

between types, you simply use the type-names as a function.

There are several built-in functions to perform conversion from one data type to another.

These functions return a new object representing the converted value.

S.No. Function & Description

1
int(x [,base])

Converts x to an integer. The base specifies the base if x is a string.

2

float(x)

Converts x to a floating-point number.

3

complex(real [,imag])

Creates a complex number.

4

str(x)

Converts object x to a string representation.

5

repr(x)

Converts object x to an expression string.

6

eval(str)

Evaluates a string and returns an object.

7

tuple(s)

Converts s to a tuple.

8

list(s)

Converts s to a list.

mailto:info@fountainit.com.bd

Big Data & Hadoop Hands On Training Material

This copy is only provided to DLE-4 Course trainee | info@fountainit.com.bd

9

set(s)

Converts s to a set.

10

dict(d)

Creates a dictionary. d must be a sequence of (key,value) tuples.

11

frozenset(s)

Converts s to a frozen set.

12

chr(x)

Converts an integer to a character.

13

unichr(x)

Converts an integer to a Unicode character.

14

ord(x)

Converts a single character to its integer value.

15

hex(x)

Converts an integer to a hexadecimal string.

16

oct(x)

Converts an integer to an octal string.

Python Basic Operators

mailto:info@fountainit.com.bd

Big Data & Hadoop Hands On Training Material

This copy is only provided to DLE-4 Course trainee | info@fountainit.com.bd

Operators are the constructs, which can manipulate the value of operands. Consider the

expression 4 + 5 = 9. Here, 4 and 5 are called the operands and + is called the

operator.

Types of Operator
Python language supports the following types of operators −

• Arithmetic Operators

• Comparison (Relational) Operators

• Assignment Operators

• Logical Operators

• Bitwise Operators

• Membership Operators

• Identity Operators

Let us have a look at all the operators one by one.

Python Arithmetic Operators
Assume variable a holds the value 10 and variable b holds the value 21, then −

Show Example

Operator Description Example

+ Addition
Adds values on either side of the operator. a + b =

31

- Subtraction
Subtracts right hand operand from left hand operand. a – b =

-11

*
Multiplication

Multiplies values on either side of the operator a * b =
210

/ Division
Divides left hand operand by right hand operand b / a =

2.1

mailto:info@fountainit.com.bd
https://www.tutorialspoint.com/python3/arithmetic_operators_example.htm

Big Data & Hadoop Hands On Training Material

This copy is only provided to DLE-4 Course trainee | info@fountainit.com.bd

% Modulus
Divides left hand operand by right hand operand and returns remainder b % a =

1

** Exponent

Performs exponential (power) calculation on operators a**b
=10 to

the
power

20

//

Floor Division - The division of operands where the result is the quotient in
which the digits after the decimal point are removed. But if one of the
operands is negative, the result is floored, i.e., rounded away from zero
(towards negative infinity):

9//2 =
4 and

9.0//2.0
= 4.0, -
11//3 =

-4, -
11.0//3
= -4.0

Python Comparison Operators
These operators compare the values on either side of them and decide the relation

among them. They are also called Relational operators.

Assume variable a holds the value 10 and variable b holds the value 20, then −

Show Example

Operator Description Example

==
If the values of two operands are equal, then the condition becomes true. (a == b)

is not
true.

!=
If values of two operands are not equal, then condition becomes true. (a!= b)

is true.

>
If the value of left operand is greater than the value of right operand,
then condition becomes true.

(a > b)
is not
true.

<
If the value of left operand is less than the value of right operand, then
condition becomes true.

(a < b)
is true.

mailto:info@fountainit.com.bd
https://www.tutorialspoint.com/python3/comparison_operators_example.htm

Big Data & Hadoop Hands On Training Material

This copy is only provided to DLE-4 Course trainee | info@fountainit.com.bd

>=
If the value of left operand is greater than or equal to the value of right
operand, then condition becomes true.

(a >= b)
is not
true.

<=
If the value of left operand is less than or equal to the value of right
operand, then condition becomes true.

(a <= b)
is true.

Python Assignment Operators
Assume variable a holds the value 10 and variable b holds the value 20, then −

Show Example

Operator Description Example

=

Assigns values from right side operands to left side operand c = a + b
assigns

value of a
+ b into c

+= Add AND

It adds right operand to the left operand and assign the result to left
operand

c += a is
equivalent
to c = c +

a

-= Subtract AND

It subtracts right operand from the left operand and assign the result to
left operand

c -= a is
equivalent
to c = c -

a

*= Multiply AND

It multiplies right operand with the left operand and assign the result to
left operand

c *= a is
equivalent
to c = c *

a

/= Divide AND

It divides left operand with the right operand and assign the result to
left operand

c /= a is
equivalent
to c = c /

a

%= Modulus
It takes modulus using two operands and assign the result to left c %= a is

equivalent
to c = c

mailto:info@fountainit.com.bd
https://www.tutorialspoint.com/python3/assignment_operators_example.htm

Big Data & Hadoop Hands On Training Material

This copy is only provided to DLE-4 Course trainee | info@fountainit.com.bd

AND operand % a

**= Exponent
AND

Performs exponential (power) calculation on operators and assign value
to the left operand

c **= a is
equivalent
to c = c

** a

//= Floor
Division

It performs floor division on operators and assign value to the left
operand

c //= a is
equivalent
to c = c

// a

Python Bitwise Operators
Bitwise operator works on bits and performs bit-by-bit operation. Assume if a = 60; and

b = 13; Now in binary format they will be as follows −

a = 0011 1100

b = 0000 1101

a&b = 0000 1100

a|b = 0011 1101

a^b = 0011 0001

~a = 1100 0011

Python's built-in function bin() can be used to obtain binary representation of an integer

number.

The following Bitwise operators are supported by Python language −

Show Example

Operator Description Example

& Binary AND

Operator copies a bit, to the result, if it exists in both operands (a & b)
(means
0000
1100)

mailto:info@fountainit.com.bd
https://www.tutorialspoint.com/python3/bitwise_operators_example.htm

Big Data & Hadoop Hands On Training Material

This copy is only provided to DLE-4 Course trainee | info@fountainit.com.bd

| Binary OR

It copies a bit, if it exists in either operand. (a | b) =
61 (means

0011
1101)

^ Binary XOR

It copies the bit, if it is set in one operand but not both. (a ^ b) =
49 (means

0011
0001)

~ Binary Ones
Complement

It is unary and has the effect of 'flipping' bits.

(~a) = -61
(means

1100 0011
in 2's

complement
form due to

a signed
binary
number.

<< Binary Left Shift

The left operand's value is moved left by the number of bits
specified by the right operand.

a << =
240 (means

1111
0000)

>> Binary Right Shift

The left operand's value is moved right by the number of bits
specified by the right operand.

a >> = 15
(means
0000
1111)

Python Logical Operators
The following logical operators are supported by Python language. Assume

variable a holds True and variable b holds False then −

Show Example

Operator Description Example

and Logical AND
If both the operands are true then condition becomes true. (a and b)

is False.

mailto:info@fountainit.com.bd
https://www.tutorialspoint.com/python3/logical_operators_example.htm

Big Data & Hadoop Hands On Training Material

This copy is only provided to DLE-4 Course trainee | info@fountainit.com.bd

or Logical OR
If any of the two operands are non-zero then condition becomes true. (a or b) is

True.

not Logical NOT
Used to reverse the logical state of its operand. Not(a and

b) is True.

Python Membership Operators
Python’s membership operators test for membership in a sequence, such as strings, lists, or

tuples. There are two membership operators as explained below −

Show Example

Operator Description Example

in

Evaluates to true if it finds a variable in the specified sequence and false
otherwise.

x in y,
here in

results in
a 1 if x

is a
member

of
sequence

y.

not in

Evaluates to true if it does not finds a variable in the specified sequence
and false otherwise.

x not in
y, here
not in

results in
a 1 if x
is not a
member

of
sequence

y.

Python Identity Operators
Identity operators compare the memory locations of two objects. There are two Identity

operators as explained below −

Show Example

Operator Description Example

mailto:info@fountainit.com.bd
https://www.tutorialspoint.com/python3/membership_operators_example.htm
https://www.tutorialspoint.com/python3/identity_operators_example.htm

Big Data & Hadoop Hands On Training Material

This copy is only provided to DLE-4 Course trainee | info@fountainit.com.bd

is

Evaluates to true if the variables on either side of the operator point
to the same object and false otherwise.

x is y,
here is results
in 1 if id(x)
equals id(y).

is not

Evaluates to false if the variables on either side of the operator point
to the same object and true otherwise.

x is not y,
here is not

results in 1 if
id(x) is not
equal to

id(y).

Python Operators Precedence
The following table lists all operators from highest precedence to the lowest.

Show Example

S.No. Operator & Description

1
**

Exponentiation (raise to the power)

2
~ + -

Ccomplement, unary plus and minus (method names for the last two are +@ and -@)

3

* / % //

Multiply, divide, modulo and floor division

4

+ -

Addition and subtraction

5

>> <<

Right and left bitwise shift

6 &

mailto:info@fountainit.com.bd
https://www.tutorialspoint.com/python3/operators_precedence_example.htm

Big Data & Hadoop Hands On Training Material

This copy is only provided to DLE-4 Course trainee | info@fountainit.com.bd

Bitwise 'AND'

7

^ |

Bitwise exclusive `OR' and regular `OR'

8

<= < > >=

Comparison operators

9

<> == !=

Equality operators

10

= %= /= //= -= += *= **=

Assignment operators

11

is is not

Identity operators

12

in not in

Membership operators

13

not or and

Logical operators

mailto:info@fountainit.com.bd

Big Data & Hadoop Hands On Training Material

This copy is only provided to DLE-4 Course trainee | info@fountainit.com.bd

Class Lab Work:

Basic.py
import sys
import time
import findprime
import pandas as pd

def stringops(inputstring):
 firstnum=inputstring.find('_')
 intstr=inputstring[firstnum + 1:len(inputstring)]
 print("intstr first: " + intstr)
 secondnum=intstr.find('_')
 intstr = intstr[secondnum + 1:len(intstr)]
 print("intstr second: " + intstr)

 thirdnum=intstr.find('_')
 intstr = intstr[thirdnum +1 :len(intstr)]
 print("intstr third: " + intstr)
 outputstring=intstr
 return outputstring

lamda function
multi = lambda arg1, arg2: arg1 * arg2;

if __name__ == '__main__':
 start_time = time.time()
 print("Starting Time %s" % time.ctime())
 s="RAW_input_data_19042020"
 datetimevalue = stringops(s)
 #An Easy way to find that
 pos = s.rfind('_')
 newvalue = s[pos+1:len(s)]
 print("Using Function Method:" + datetimevalue)
 print("Using rfind Method:" + newvalue)
 #Python list - it is kind of arrary but it can contain different data types
 list = [1, 2, 3, 4, 5, 6, 7]
 print(list[4])
 print(list[3:5])
 list[2]=400
 print(list)
 #Python Tuples - it can't be updated
 t=('a','b','c',1,2,3,4)
 print(t)
 print(t[3])
 #Python Dictionary

 dict={'word1':1,'word2':3,'word4':7}
 print(dict['word1'])
 print(dict['word4'])
 print(dict.keys())
 print(dict.values())
 wordcount="I want to learn python. But I am affraid of python"
 words=wordcount.split()
 print(words)
 count = {}
 for word in words:
 if word in count:

mailto:info@fountainit.com.bd

Big Data & Hadoop Hands On Training Material

This copy is only provided to DLE-4 Course trainee | info@fountainit.com.bd

 count[word]=count[word] + 1
 else:
 count[word] = 1
 print(count)

 a=13
 b=a//3
 print(b)
 if b==1:
 print("First")
 elif b==2:
 print("Second")
 elif b == 3:
 print("Third")
 else:
 print("Forth")

 if b==4:
 print("Right Input Fourth")

 #Array operations
 a=[]
 a=[1,2,3,4,5,6]
 a[3]=10
 print(a)

 #Loops
 print("For Loop Testing")
 for j in a:
 print(j)

 #While loop
 print("While Loop Testing")
 dec=7
 result=""
 while(dec > 0):
 mod = dec % 2
 dec = dec // 2 #Python has a difference in / and // operation
 print(mod)
 result=result + str(int(mod))
 #print(dec)

 print("Binary Coversion of " + str(dec) + "is: "+ result)

 #File Opreations
 try:
 fo=open("D:\\Track\\Datasciencelab\\BDREN\\Software_Binaries\\trips.csv","r+")
 #fo.writelines("\n2020,Chittagong,Kaptai,700,900,1026,1027")
 while True:

 line=fo.readline()
 if not line:
 break;
 print(line) # You may not get the last line because we loaded a file object in earlier time

 except IOError:
 print("IO Error Occured")
 else:
 print("File operation is done succesfully")

mailto:info@fountainit.com.bd

Big Data & Hadoop Hands On Training Material

This copy is only provided to DLE-4 Course trainee | info@fountainit.com.bd

 print(str)
 fo.close()

 #Checking Lamda Function
 print("Checking Lamda Function")
 checklamda = multi(10,30)
 print(checklamda)

 #Understanding Import Function
 usernumber = input("Please provide a number to check prime or not: ")

 primeif=findprime.primeidentify(int(usernumber))
 if(primeif == 1):
 print("Given number is prime")
 else:
 print("Given number is not prime")

 #Handling External Package
 print("Practice using Pandas Package")
 csvload = pd.read_csv("D:\\Track\\Datasciencelab\\BDREN\\Software_Binaries\\trips.csv", sep=',',
header=0,
 index_col=False)
 print(csvload)
 print(csvload.groupby(['driverid']).count())
 print(csvload['tripid'].count())

 end_time = time.time()
 print("Program Ending Time %s" % time.ctime())
 print("%s Durtion in seconds " % (end_time - start_time))
 exit(0)

findprime.py

import sys
import math

def primeidentify(n):
 check=1
 if (n==0 or n==1 or n <0):
 return 0;
 elif (n==2):
 return 1;
 else:
 a=math.sqrt(n)
 i=2
 while(i <=a):

 mod = n % i
 if (mod == 0):
 check = 0;
 break;
 i = i + 1
 return check;

mailto:info@fountainit.com.bd

Big Data & Hadoop Hands On Training Material

This copy is only provided to DLE-4 Course trainee | info@fountainit.com.bd

Decision Making/Loops related more
exercise:

trainingclass.py

import fibonacci
import pandas as pd
if __name__=='__main__':
 print("This is my training program")
 a = 20
 p=a%2
 c=a // 2
 print("P=",p)
 if (p !=0):
 print("This is an odd number")
 else:
 print("This is an even number")

 while(a > 0):
 print(a);
 a=a-1;

 for i in range(1,c):
 print(i)

 var = "This is our first class on python"
 for letter in var:
 print(letter)

 x = int(input("Please enter a number input:"))
 if x < 0:
 x = 0
 print("Negative changed to zero")
 elif x == 0:
 print("Zero")
 elif x == 1:
 print("Single")
 else:
 print("More than one")
 # Fibonacci series print
 n = int (input("Please provide input to print Nth fibonacci series number:"))
 result = fibonacci.fibonacci_series(n)
 print(result)

fibonacci.py
def fibonacci_series(n):
 a = 0
 b = 1
 c = a + b
 i = 3
 if (n == 1):
 print(a)
 elif (n == 2):
 print(b)
 elif (n == 3):
 print(c)
 else:

mailto:info@fountainit.com.bd

Big Data & Hadoop Hands On Training Material

This copy is only provided to DLE-4 Course trainee | info@fountainit.com.bd

 print("Calculating fibonacci number")
 while(i < n):
 r1 = c
 r2 = b
 r3 = r1 + r2
 i = i + 1
 c = r2
 b = r3

 return r3

mailto:info@fountainit.com.bd

