
Big Data & Hadoop Hands On Training Material

This copy is only provided to DLE-4 Course trainee | info@fountainit.com.bd

Shell Scripts

Introduction

Shell scripts are text files that automate a series of UNIX environment-based commands
that otherwise must be performed one at a time. Shell scripts are often used to automate
command sequences that repeat, such as services that start or stop on system start up or
shut down.

Any command that can be performed from the command line, such as ls, can be included in
a shell script. Similarly, any command that can be included in a shell script can be
performed on the UNIX environment command line.

Users with little or no programming experience can create and run shell scripts. You
initiate the sequence of commands in the shell script by simply entering the name of the
shell script on a command line.

Determining the Type of Shell to Run a Shell Script

There are several different shells available in the UNIX OS. Two of the most commonly
used shells are the Bourne shell and the Korn shell.

To ensure that the correct shell is used to run a shell script, the first line of the script should
always begin with the characters #!, followed immediately by the absolute path name of
the shell required to run the script. These must be the only characters on the first line of the
file.

#!/full-pathname-of-shell

For example:

#!/bin/sh

or

#!/bin/ksh

Comments

Comments are text entries that often provide information about a shell script. They are
inserted into a shell script but have no effect on the script itself. Comments are ignored by
the shell and are solely for the benefit of the user.

Comments are preceded by the hash (#) character. Whenever the shell encounters a word
beginning with the # character it ignores all text on that line.

For example:

mailto:info@fountainit.com.bd

Big Data & Hadoop Hands On Training Material

This copy is only provided to DLE-4 Course trainee | info@fountainit.com.bd

this is a comment
ls -l # list the files in a directory

Introduction

The shell interprets shell scripts line by line. Shell scripts are not compiled into binary form.
Because shell scripts have to be read line by line when they are run, the user must have
read permissions to be able to run a shell script.

For example, to grant read permissions to the mycmd user type:

$ chmod u+rx mycmd

When a shell script is running, any applied changes occur in the sub-shell or child process.
A sub-shell cannot change the values of a variable in the parent shell, or its working
directory.

$ cat myvars
echo running myvars
FMHOME=/usr/frame
MYBIN=/export/home/user1/bin
$ ls -l myvars
-rw-r--r-- 1 user1 other 65 Sep 15 16:14 myvars
$ chmod u+x myvars
$ ls -l myvars
-rwxr--r-- 1 user1 other 65 Sep 15 16:14 myvars
$ mywars
running myvars

After running the script, the FMHOME and MYBIN variables are not available because the
script is run in a sub-shell.

$ echo $FMHOME
$

One of the most frequently used shell scripts is a users initialization file (~/.profile). This
script is specifically designed to set the working environment of the user in the current shell.

If you made changes to your .profile you need to implement these changes in the current
shell without logging out and logging back in. The dot (.) command performs the
commands in the specified script in the current shell, as if the commands were entered on
the command line.

$. myvars running myvars
$ echo $FMHOME
/usr/frame

mailto:info@fountainit.com.bd

Big Data & Hadoop Hands On Training Material

This copy is only provided to DLE-4 Course trainee | info@fountainit.com.bd

Passing Values to a Shell Script

Introduction

Shell scripts become more useful when you pass values to them while you run them. When
you run a shell script and pass values to it on the command line, the shell stores the first
word after the script name in the $1 variable, the second in the $2 variable, and so on.
These special variables ($1, $2, and so on) are called positional parameters, and they are
very useful to verify that the user passed the correct number of values when the script was
run.

For example:

$ cat greetings
#!/bin/sh
echo #echo the first two parameters passed

Add execute permissions to greetings.

$ chmod u+x greetings

Run greetings while passing the hello and world values.

$ greetings hello world
hello world

The shift Command

In the Bourne and Korn shells you can pass as many values as necessary on the command
line. However, the Bourne shell accepts only a single number after the $ sign. An attempt
to access the value in the tenth argument by using the notation 0 results in the value of
followed by a zero (0).

The shift command enables you to shift your positional parameter values back by one
position. For example, the value of the parameter becomes assigned to the parameter.
Similarly, the value of the parameter becomes assigned to the parameter, and so on.

Note: In the Korn shell, you can access the tenth parameter directly by referring to ${10}.

Checking the Exit Status

All commands in the UNIX environment return an exit status. This numeric value is used to
indicate the success or failure of a command. A value of zero indicates success. A non-zero
value indicates failure. This non-zero value can be any integer in the range of 1-255.

The program developer can use the exit status values to indicate different error situations.
The exit status of the last command performed in the foreground is held in the $? special
shell variable, and can be tested by using the echo command.

mailto:info@fountainit.com.bd

Big Data & Hadoop Hands On Training Material

This copy is only provided to DLE-4 Course trainee | info@fountainit.com.bd

For example:

$ grep other /etc/group
other::1:
$
$ echo $?
0
$
$ grep others /etc/group
$ echo $?
1
2
$

Using the test Command

Introduction

The test command is used for testing conditions. This command is very useful in shell scripts.
The test command can be used to verify many conditions, including:

• Variable contents
• File access permissions
• File types

The test command can be written as test expression or by using the [expression] special
notation.

The test command does not return any output. If the condition being tested is true, the exit
status of the test command is set to 0. If the condition being tested is false, the exit status is
set to 1.

Examples of the test command include the following:

• Test if the value of the LOGNAME variable is user1.
• $ echo $LOGNAME

• user1

•

• $ test "$LOGNAME" = "user1"

• $ echo $?
0

• Test if the value of the LOGNAME variable is user1 by using the [expression] notation.
• $ echo $LOGNAME

• user1

•

• $ ["$LOGNAME" = "user1"]

• $ echo $?
0

mailto:info@fountainit.com.bd

Big Data & Hadoop Hands On Training Material

This copy is only provided to DLE-4 Course trainee | info@fountainit.com.bd

• Test if the user has read permissions on the /etc/group file.
• $ ls -l /etc/group

• -rw-r--r-- 1 root sys 290 Sep 13 15:14 /etc/group

•

• $ test -r /etc/group

• $ echo $?
0

• Test if the user has read permissions on the /etc/group file by using the [expression]
notation.

• $ ls -l /etc/group

• -rw-r--r-- 1 root sys 290 Sep 13 15:14 /etc/group

•

• $ [-r /etc/group]

• $ echo $?

0

• Determine if /etc is a directory.
• $ ls -ld /etc

• drwxr-xr-x 53 root sys 3584 Sep 18 11:48 /etc

•

• $ test -d /etc

• $ echo $?
0

• Determine if /etc is a directory using the [expression] notation.
• $ [-d /etc]

• $ echo $?
0

• Compare the result against a known file.
• $ test -d /etc/group

• $ echo $?
1

• Compare against a known file using the [expression] notation.
• $ [-d /etc/group]

• $ echo $?
1

Executing Conditional Commands

Introduction

The shell provides two special constructs that enable you to perform a command based on
whether a proceeding command succeeds or fails.

mailto:info@fountainit.com.bd

Big Data & Hadoop Hands On Training Material

This copy is only provided to DLE-4 Course trainee | info@fountainit.com.bd

The && construct ensures that a command is performed only if the preceding command
succeeds.

For example:

$ mkdir $HOME/newdir && cd $HOME/newdir

The || construct ensures that a command is performed only if the preceding command
fails.

For example:

$ mkdir /usr/tmp/newdir || mkdir $HOME/newdir

Using the if Command

The if command evaluates the exit status of a command and initiates additional actions
based on the returned value. The if command syntax is as follows:

$ if command1
> then
> execute command2
> else
> execute command3
> fi

If the exit status is zero, any commands that follow the then statement are performed. If the
exit status is non-zero, any commands that follow the else statement are performed.

The if command is always closed with the fi statement. The if command is often used in
conjunction with the test command.

Examples of the if command include display a greetings message:

$ id
uid=101(frame) gid=1(other)
$

$ if test "$LOGNAME" = root
> then echo Hello System Administrator
> else
> echo Hello "$LOGNAME"
> fi

Hello frame

$ if ["$LOGNAME" = "root"]
> then echo hello System Administrator
> else
> echo hello "$LOGNAME"
> fi
hello frame

mailto:info@fountainit.com.bd

Big Data & Hadoop Hands On Training Material

This copy is only provided to DLE-4 Course trainee | info@fountainit.com.bd

Confirm that the user has read permissions for the /etc/group file.

$ if test -r /etc/group
> then
> echo "You have read permission on /etc/group"
> else
> echo "Sorry unable to read /etc/group file"
> fi
You have read permission on for the /etc/group file

$ if [-r /etc/group]
> then
> echo "You have read permission on /etc/group"
> else
> echo "Sorry unable to read /etc/group file"
> fi

You have read permission on for the /etc/group file

Determine if a file is a directory.

$ ls -ld /etc
drwxr-xr-x 53 root sys 3584 Sep 18 11:48 /etc

$ if test -d /etc
> then
> echo /etc is a directory
> else
> echo /etc is not a directory
> fi
/etc is a directory

$ if [-d /etc]
> then
> echo /etc is a directory
> else
> echo /etc is not a directory
> fi
/etc is a directory

$ if test -d /etc/group
> then
> echo /etc is a directory
> else
> echo /etc is not a directory
> fi
/etc is not a directory

Executing Conditional Commands

Using the while Command

The while command enables you to repeat a command or group of commands. The while
command syntax is as follows:

mailto:info@fountainit.com.bd

Big Data & Hadoop Hands On Training Material

This copy is only provided to DLE-4 Course trainee | info@fountainit.com.bd

$ while command1
> do
> command2
> done

In this example, the while command evaluates the exit status of the command1 command that
follows it.

If the value is zero, any commands that follow the do statement are performed, command1
is run again, and the exit status checked again.

If the exit status of command1 is non-zero, the loop terminates.

For example, use the set command to assign values to the positional parameters as follows:

$ set this is a while loop
$ echo $*
this is a while loop

$ while [$# -gt 0]
> do
> echo
> shift
> done
this
is
a
while
loop

Using the case Command

The case command compares a single value against other values, and performs a
command or group of commands when a match is found. The case command syntax is as
follows:

$ case value in
> pat1) command
> command
> ...
> command
> ;;
> pat2) command
> command
> ...
> command
> ;;
> ...
> patn) command
> command
> ...
> command
> ;;
> esac

mailto:info@fountainit.com.bd

Big Data & Hadoop Hands On Training Material

This copy is only provided to DLE-4 Course trainee | info@fountainit.com.bd

When a match is found and the respective commands are performed, no other patterns
are checked.

For example:

#!/sbin/sh

Copyright 2003 Sun Microsystems, Inc. All rights reserved.
Use is subject to license terms.

ident "@(#)volmgt 1.7 03/12/09 SMI"

$ case "" in
> 'start')
> if [-f /etc/vold.conf -a -f /usr/sbin/vold -a \
> "${_INIT_ZONENAME:=&backquot;/sbin/zonename&backquot;}" = "global"]; then

> echo 'volume management starting.'
> /usr/sbin/vold >/dev/msglog 2>&1 &
> fi
> ;;
>
> 'stop')
> /usr/bin/pkill -x -u 0 vold
> ;;
>
> *)
> echo "Usage: PAGECONTENT { start | stop }"
> exit 1
> ;;
>
> esac
exit 0

As an example:

case $1 in
‘sus’)
echo “ This is right “
;;
‘shan’)
echo “ This is not right “
;;
*)
echo “ Please input correct one”
;;
esac

Class Lab Work:

shellpractice.sh

mailto:info@fountainit.com.bd

Big Data & Hadoop Hands On Training Material

This copy is only provided to DLE-4 Course trainee | info@fountainit.com.bd

#!/bin/bash

echo "This is my first Shell Script"

capture_out=`date`

echo $capture_out

num=1

if [$# -lt $num]

then

echo "Use <script_name> <argument>"

exit

fi

echo "Shell Script File Name is: " $0

echo "The given first argument is: " $1

echo "printing common shell variable" $LOGNAME $HOME $HADOOP_HOME

#Let us check Piping

cat /etc/passwd | awk -F: {'print $1'} | sort -n > userlist.txt

#While Loop Testing

set this is a while loop

echo $*

while [$# -gt 0]

do

echo

shift

done

#For Loop Testing

set this is for loop

for i in $*

do

echo $i

done

#Accessing files under a directory

for file in /home/hadoop/*

do

echo $file

done

#Testing much more mature for

for((c=1;c<=5;c++))

do

echo "Welcom Number $c"

done

mailto:info@fountainit.com.bd

Big Data & Hadoop Hands On Training Material

This copy is only provided to DLE-4 Course trainee | info@fountainit.com.bd

#Changing Datetime format

changedname=`date '+%Y%m%d%H%M%S'`

echo $changedname

#Retention of log files generated by Spark in /tmp directory

find /tmp/spark-events/ -mtime +15 -exec rm -rf {} \;

More Example Cases:

#More mature loop test for while
#!/bin/sh
INPUT_STRING=hello
while ["$INPUT_STRING" != "bye"]
do
 echo "Please type something in (bye to quit)"
 read INPUT_STRING
 echo "You typed: $INPUT_STRING"
done

#!/bin/sh
while :
do
 echo "Please type something in (^C to quit)"
 read INPUT_STRING
 echo "You typed: $INPUT_STRING"
done

while read f
do
 case $f in
 hello) echo English ;;
 howdy) echo American ;;
 gday) echo Australian ;;
 bonjour) echo French ;;
 "guten tag") echo German ;;
 *) echo Unknown Language: $f
 ;;
 esac
done < myfile

#Testing nomal for
for i in 1 2 3
do
echo $i
done

mailto:info@fountainit.com.bd

Big Data & Hadoop Hands On Training Material

This copy is only provided to DLE-4 Course trainee | info@fountainit.com.bd

#Testing for to see all files in a directory
for i in *
do
echo $i
done
#Testing much more mature for
for((c=1;c<=5;c++))
do
echo "Welcom Number $c"
done
#Testing for loop for infinate loop
for ((;;))
do
echo "Press Ctrl+C to quit"
sleep 10
done
#Following script will go through a specific directory & will stop when it gets a file named
/etc/resolv.conf and count the number of name server

for file in /etc/*
do
 if ["${file}" == "/etc/resolv.conf"]
 then
 echo $file
 countofnameserver=`grep -c nameserver /etc/resolv.conf`
 echo "Count of name server is: $countofnameserver"
 break
 fi
done
set a.txt b.txt c.bak
for i in $*
do
 if [${i} == "c.bak"]
 then
 echo "This is c.bak file... $i let's continue... for other files"
 continue
 fi
echo "This is not a c.bak file, let's do ops for $i"
done

mailto:info@fountainit.com.bd

