Practical Cryptography

Handout 7 – Public Key Distribution

Kasun de Zoysa kasun@ucsc.cmb.ac.lk

UNIVERSITY OF COLOMBO SCHOOL OF COMPUTING

Asymmetric Key / Public Key Cryptosystem

- Uses a Key Pair (Public / Private Keys) *
- Public Key shared between users
 - Strengths
 - Better Scalability than Symmetric Key Cryptosystems
 - Can provide confidentiality, authentication and nonrepudiation
 - Key Distribution Management
 - Uses one Key to encrypt, the other to decrypt
 - Weaknesses
 - Slower Algorithms than Symmetric Key System
 - Algorithms
 - RSA, Elliptic Curve Cryptosystem (ECC), Diffie-Hellman
 - DSS (Digital Signature Standard), PGP
 - ECC has higher work factor than other asymmetric algorithms

Key Distribution

- symmetric encryption schemes require both parties to share a common secret key
- issue is how to securely distribute this key without revealing it to an adversary
- many attacks are based on poor key management and distribution rather than breaking the codes
- This is, actually, the most difficult problem in developing secure systems

Diffie-Hellman Key Agreement

•Published in 1976

•Based on difficulty of calculating discrete logarithm in a finite field

•Two parties agreed on two large numbers n and g, such that g is a prime with respect to n

Possible to do man in the middle attack

Session Key / Master Key

- The idea of having a key-encryption-key (master key) to generate random and temporary session keys
- can be implemented in several ways
- Basic D-H is such an example
- public/private keys are master keys, exchanged key is a session key

Hybrid Encryption

- Why is symmetric key encryption still used?
 - Performance
 - Also cryptographic reasons
 - In practice one uses hybrid encryption...
 - A one-time random key is generated ("session key")
 - This is used to symmetrically encrypt the message
 - The symmetric session key is encrypted through public key encryption and sent to the other party together with the (encrypted) message

Storage and Handling Public Keys

Key Management

- Using a public key system, A wants to talk to B
- C is the Key Distribution Center(Key Server), has A and B's public key
- A calls C and obtains the Public key of B
- A encrypts a session key, "k", with the public key and sends the encrypted "k" to B
- A and B can then communicate

Secure Sending of secret key

Recovery of Secret Key

Authenticity of Sender

Practical Cryptography

Verification of Signature

Authenticity of Sender and Receiver

Saturday, February 22, 2020

Full Verification

UCSC Practical Cryptography

Distribution of the Public Keys

- use of Public Key Cryptography to distribute secret keys
- public/private key as a master key
- the most important barrier against the deployment of PKC in applications is distribution of public keys
- how can I make sure about the legitimacy of a public key?
- how can I make sure that Bob's public key really belongs to Bob, not to Charlie?

Certificate Authority

Certification Authorities

- Certification authority (CA): binds public key to particular entity, A .
- An entity A registers its public key with CA.
- A provides "proof of identity" to CA.
- CA creates certificate binding A to its public key.
- Certificate contains A's public key AND the CA's signature of E's public key.

Public Key Certificates

- certificates allow public key exchange without realtime access to public-key authority
- a certificate binds identity to public key usually with other info such as period of validity, issuer's info, cryptographic details, etc
- all contents signed by a trusted Certification Authority (CA)
- can be verified by anyone who knows the CA's public-key
- CA must make sure about the identity of the certificate owner

Internal Structure of Certificate

- Version
- Serial Number
- •Signature Algorithm
- •lssuer
- Subject
- •Validity
- Subject Public Key Information
- Extensions
- •Signature

Structure of Distinguish Name

- Country Name
- •State and Province Name
- Locality Name
- Organization Name
- Organization Unit Name
- Common Name
- •Email Address
- •URL

Certificate Types

Digital Signature
Key Encipherment
Data Encipherment
Key Certificate Signature
CRL Signature
Object Signing

Certification Authorities

- When Alice wants Bob's public key:
- Gets Bob's certificate (from Bob or elsewhere).
- Use CA's public key to verify the signature within Bob's certificate, then accepts public key

Public-Key Certificates

- Certificates are widely used in practice
- is a single CA sufficient?
- what happens if the CA's public key is not known?

• how to distribute CA public keys?

- what happens if a certificate is revoked?
- How the users exchange their certificates in practical applications?

Root Certificate

eral Details Certification F	Field	Value
	E Version	V3
Certificate Inform	💳 Serial Number	1E48 37A9 F5DA 1D90 44D0 1
	E Signature Algorithm	sha1RSA
This certificate is intend	Elssuer	seclab, Department of Compute
•Windows System Corr	🖻 Valid From	Wednesday, May 22, 2002 1:1
•Windows Hardware D •Allow data on disk to I	🖻 Valid To	Saturday, May 22, 2004 1:26:2
•Allow secured commu	E Subject	seclab, Department of Compute
 Allow you to digitally si Allow data to be signal 	E Public Key	RSA (512 Bits)
Issued to: seclab Issued by: seclab Valid from 5/22/02	CN = seclab OU = Department of Computer O = Unibversity of Colombo L = Colombo S = Western C = US E = rasikad@mail.cmb.ac.lk	Science
		Edit Properties Copy to File

Certificate

? ×

Certificate Hierarchy

CA Hierarchy in Practice

Flat or Clayton's hierarchy

- CA certificates are hard-coded into web browsers or email software
 - Later software added the ability to add new CAs to the hardcoded initial set

Alternative Trust Hierarchies

Bob knows B and D who know A and C who know Alice ⇒ Bob knows the key came from Alice

Web of trust more closely reflects real-life trust models

Cross Certification

Certificate Revocation

- •Revocation is managed with a Certificate Revocation List (CRL), a form of anti-certificate which cancels a certificate
- Equivalent to 1970s-era credit card blacklist booklets
- Relying parties are expected to check CRLs before using a certificate
- "This certificate is valid unless you hear somewhere that it isn't"

CRL Distribution Problems

- CRLs have a fixed validity period
- Valid from issue date to expiry date
- At *expiry date*, all relying parties connect to the CA to fetch the new CRL
- Massive peak loads when a CRL expires (DDOS attack)
- Issuing CRLs to provide timely revocation exacerbates the problem
- 10M clients download a 1MB CRL issued once a minute = ~150GB/s traffic
- Even per-minute CRLs aren't timely enough for high-value transactions with interest calculated by the minute

Online Status Checking

•Online Certificate Status Protocol, OCSP

- Inquires of the issuing CA whether a given certificate is still valid
 - Acts as a simple responder for querying CRL's
 - Still requires the use of a CRL to check validity
- OCSP acts as a selective CRL protocol
- Standard CRL process: "Send me a CRL for everything you've got"
- OCSP process: "Send me a pseudo-CRL/OCSP response for only these certs"
- Lightweight pseudo-CRL avoids CRL size problems
- Reply is created on the spot in response to the request
- Ephemeral pseudo-CRL avoids CRL validity period problems

Online Certificate Status Protocol (OCSP)

- Returned status values are non-orthogonal
- Status = "good", "revoked", or "unknown"
- "Not revoked" doesn't necessarily mean "good"
- "Unknown" could be anything from "Certificate was never issued" to "It was issued but I can't find a CRL for it"

OCSP Problems

- •Problems are due in some extent to the CRL-based origins of OCSP
- CRL can only report a negative result
- "Not revoked" doesn't mean a cert was ever issued
- Some OCSP implementations will report "I can't find a CRL" as "Good"
- Some relying party implementations will assume "revoked"
 "not good", so any other status = "good"
- Much debate among implementors about OCSP semantics

Other Online Validation Protocols

Simple Certificate Validation Protocol (SCVP)

- Relying party submits a full chain of certificates
- Server indicates whether the chain can be verified
- Aimed mostly at thin clients

Data Validation and Certification Server Protocols (DVCS)

– Provides facilities similar to SCVP disguised as a general third-party data validation mechanism

- Integrated CA Services Protocol (ICAP)
- Real-time Certificate Status Protocol (RCSP)
- Web-based Certificate Access Protocol (WebCAP)
- Delegated Path Validation (DPV)
- Offshoot of the SCVP/DVCS debate and an OCSP alternative OCSP-X

Automatic Certificate Management Environment (ACME)

The certificate authorities in the Web PKI are trusted to verify that an applicant for a certificate legitimately represents the domain name(s) in the certificate.Today, the verification is done through a collection of ad hoc mechanisms.

ACME protocol automates process of verification and certificate issuance.

Discussion

