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Cryptography
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Encryption using Public-Key system
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Authentication using Public-Key System
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Applications for Public-Key Cryptosystems

Three categories:

Encryption/decryption: The sender encrypts 
a message with the recipient’s public key.

Digital signature: The sender ”signs” a 
message with its private key.

Key exchange: Two sides cooperate two 
exchange a session key.
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Public-Key Cryptographic Algorithms

Diffie-Hellman 
Exchange a secret key securely
Compute discrete logarithms

RSA - Ron Rives, Adi Shamir and Len Adleman at 
MIT, in 1977.

The most widely implemented

Elliptic Curve Cryptography (ECC)
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Trapdoor Function
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AA

X=gx mod p
k=Yx mod p= gxy mod p

Alice picks x=3
Alice's X = 6^3 mod 17 
= 216 mod 17 = 12

Alice's k = 7^3 mod 17 
= 243 mod 17 = 3 

Y=gy mod p
k=Xy mod p= gxy mod p

Bob picks y=5
Bob's Y = 6^5 mod 17 
= 7776 mod 17 = 7

Bob's k = 12^5 mod 17 
= 248832 mod 17 = 3

X=12
Y=7

BB

CC

Diffe-Hellman Key Agreement

g=6 p=17
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AA

X=gx mod n
k=Yx mod n= gxy mod n

Y=gy mod n
k=Xy mod n= gxy mod n

X
Y

BB

CC

Possible to do man in the middle attack

Attacks on Diffe-Hellman Key Agreement

•You really don’t know anything about who you have exchanged keys with
•Alice and Bob think they are talking directly to each other, but Caldera is 
actually performing two separate exchanges
•You need to have an authenticated DH exchange
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RSA
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Encryption
C=Pe mod n

Decryption
P=Cd mod n

1. Find 2 large prime numbers p and q (100 digits=512bits)

2. Calculate the product n=p*q (n is around 200 digits)

3. Select large integer e relatively prime to (p-1)(q-1)
Relatively prime means e has no factors in common with (p-1)(q-1).
Easy way is select another prime that is larger than both(p-1) and (q-1).

4. Select d such that e*d mod (p-1)*(q-1)=1

Two keys are d and e along with n

By Rivest, Shamir and Adelman in 1978

Revest-Shamir-Adelman (RSA)



Monday, February 17, 2020Practical Cryptography 12

RSA Public Key Cryptosystem

c=
m e  mod n Network

Plain Text Cipher Text Cipher Text Plain Text

Amal

Kamal

Kamal: (e, n) Public Key Directory 
(Yellow/White Pages)

public key:
e  & n

secret key: d

m=
c d    mod n
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Encryption
C=Pe mod n 

Decryption
P=Cd mod n

1. Find 2  prime numbers p and q 

Let p=11 and q=17

2. Calculate the product n=p*q 

n = 11*17=187

3. Select large integer e relatively prime to (p-1)(q-1)
 E=7 ; 7 IS Relatively prime to  (p-1)(q-1) =10*16=160
4. Select d such that e*d mod (p-1)*(q-1)=1

d=23 because, 23*7 mod 10*16=161 mod 160 =1

RSA - Simple Example
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RSA - Simple Example
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RSA - Simple Example
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RSA - Simple Example
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RSA --- 2nd small example (1)

● Kamal:
chooses 2 primes: p=5, q=11
multiplies p and q: n = p*q = 55
fnds out two numbers e=3 & d=27 which satisfy

(3 * 27) mod 40 = 1
Kamal’s public key 

● 2 numbers: (3, 55)
● encryption alg: modular exponentiation

secret key: (27,55)
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RSA --- 2nd small example (2)

● Amal has a message m=13 to be sent to 
Kamal:

fnds out Kamal’s public encryption key 
(3, 55)
calculates c:

c = me (mod n)
   = 133 (mod 55)
   = 2197 (mod 55)
   = 52

sends the ciphertext c=52 to Kamal



Monday, February 17, 2020Practical Cryptography 19

RSA --- 2nd small example (3)

● Kamal:
receives the ciphertext c=52 from Amal
uses his matching secret decryption key 27 to 
calculate m:

m = 5227 (mod 55)
    = 13 (Amal’s message)
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RSA --- 3rd small example
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RSA Signature --- an eg (1)

● Kamal:
chooses 2 primes: p=5, q=11
multiplies p and q: n = p*q = 55
fnds out two numbers e=3 & d=27 which satisfy

(3 * 27) mod 40 = 1 
Kamal’s public key 

● 2 numbers: (3, 55)
● encryption algo:modular exponentiation

secret key: (27,55)
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RSA Signature --- an eg (2)

● Kamal has a document m=19 to sign:
uses his secret key d=27 to calculate the digital 
signature of m=19:

s = md (mod n)
   = 1927 (mod 55)
   = 24

appends 24 to 19. Now (m, s) = (19, 24) indicates 
that the doc is 19, and Kamal’s signature on the doc 
is 24.
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RSA Signature --- an eg. (3)

● Nimal, a verifer:
receives a pair (m,s)=(19, 24)
looks up the phone book and fnds out Kamal’s 
public key (e, n)=(3, 55)
calculatest = se (mod n)

  = 243 (mod 55) 
  = 19

checks whether t=m
confrms that (19,24) is a genuinely signed 
document of Kamal if t=m.
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Typical Digital Signature
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Factoring a product of two large 
primes

The best known conventional algorithm 
requires the  solution time proportional to:

T  n =exp [ c  ln n 1/3
 lnln n 2/3

]
For p & q 65 digits long T(n) is approximately 
one month using  cluster of workstations.

For p&q 200 digits long T(n) is astronomical.
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Quantum Computing algorithm for 
factoring.

In 1994 Peter Shor from the AT&T Bell 
Laboratory showed that in principle a 
quantum computer could factor  a very long 
product of primes  in seconds.
Shor’s algorithm time computational 
complexity is

T  n =O [  ln n 3
]

Once a quantum computer is built the RSA method
 would not be safe.
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•      Generate Public/Private key pairGenerate Public/Private key pair
        openssl genrsa -out mykey.pemopenssl genrsa -out mykey.pem
    openssl rsa -in mykey.pem -pubout >mypub.pemopenssl rsa -in mykey.pem -pubout >mypub.pem

• Create the signature
    openssl dgst -sha1 -sign mykey.pemopenssl dgst -sha1 -sign mykey.pem

-out mysign.sha1 jethavanaya.jpg-out mysign.sha1 jethavanaya.jpg

SignatureSignature Signature Object Plain textPlain text

Signature Creation
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•      Retrieves the  Public keyRetrieves the  Public key

• Verify the signature
   openssl dgst -sha1 -verify mypub.pem openssl dgst -sha1 -verify mypub.pem 

-signature mysign.sha1 jethavanaya.jpg -signature mysign.sha1 jethavanaya.jpg 

OK/FailOK/Fail Signature Object

Plain textPlain text

Original Original 
signaturesignature

Signature Verifcation
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•      Generate Public/Private key pairGenerate Public/Private key pair
        KeyPairGenerator keyGen= KeyPairGenerator keyGen= 
KeyPairGenerator.getInstance(“DSA");KeyPairGenerator.getInstance(“DSA");
    keyGen.initialize(1024,new SecureRandom());keyGen.initialize(1024,new SecureRandom());
    KeyPair keyPair = keyGen.generateKeyPair();KeyPair keyPair = keyGen.generateKeyPair();

•  Initialize the Signature object
      Signature signature= Signature.getInstance("SHA1withDSA");Signature signature= Signature.getInstance("SHA1withDSA");
    signature.initSign(keyPair.getPrivate(),new SecureRandom());signature.initSign(keyPair.getPrivate(),new SecureRandom());

• Create the signature
    signature.update(msg.getBytes());signature.update(msg.getBytes());
    byte[]  sigBytes = signature.sign();byte[]  sigBytes = signature.sign();

SignatureSignature Signature Object Plain textPlain text

Signature Creation
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•      Retrieves the  Public keyRetrieves the  Public key
      Let’s say KeyPair object is keyPairLet’s say KeyPair object is keyPair

•  Initialize the Signature object
    Signature signature= Signature.getInstance("SHA1withDSA");Signature signature= Signature.getInstance("SHA1withDSA");
    signature.initVerify(keyPair.getPublic());signature.initVerify(keyPair.getPublic());

• Verify the signature
    Let’s say sigBytes contains the original signatureLet’s say sigBytes contains the original signature

   signature.update(msg.getBytes());signature.update(msg.getBytes());
    signature.verify(sigBytes)signature.verify(sigBytes)

OK/FailOK/Fail Signature Object

Plain textPlain text

Original Original 
signaturesignature

Signature Verifcation
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Elliptic Curve Cryptography (ECC)
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Elliptic Curve
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Elliptic Curve



Monday, February 17, 2020Practical Cryptography 34

Elliptic curve cryptography (ECC)



Monday, February 17, 2020Practical Cryptography 35

Elliptic curve cryptography (ECC)
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To add two distinct points P and Q on an elliptic curve, draw a 
straight line between them. The line will intersect the elliptic 
cure at exactly one more point –R. The reflection of the point –R 
with respect to x-axis gives the point R, which is the results of 
addition of points P and Q.

Point Addition
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To the point P on elliptic curve, draw the tangent line to the elliptic 
curve at P. The line intersects the elliptic cure at the point –R. The 
reflection of the point –R with respect to x-axis gives the point R, 
which is the results of doubling of point P.

Point Doubling
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Scalar Multiplication
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Elliptic Curve Cryptography

● Key exchange
– ECDH -Elliptic Curve Diffe-Hellman

● Digital Signatures
– ECDSA -Elliptic Curve Digital Signature Algorithm

● ECDH and ECDSA are standard methods

● Encryption/Decryption with ECC is 
possible, but not common
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ECC Cryptography
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Elliptic curves are used to construct the public key cryptography system

The private key d is randomly selected from [1,n-1], where n is integer. 

Then the public key Q is computed by dP, where P,Q are points on the 
elliptic curve.

Like the conventional cryptosystems, once the key pair (d, Q) is 
generated, a variety of cryptosystems such as signature, 
encryption/decryption, key management system can be set up.

Computing dP is denoted as scalar multiplication. It is not only used for 
the computation of the public key but also for the signature, encryption, 
and key agreement in the ECC system.

ECC Cryptography
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http://andrea.corbellini.name/2015/05/17/elliptic-curve-cryptography-a-gentle-introduction/

Elliptic Curve Deffe-Hellmen (ECDH)
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Example Curve Y2=X3+2X+2

● G = (5,1)
● 2G=(6,3)

● 3G=2G+G=(10,6)

● 4G=2(2G)=(3,1)

● 5G=2(2G)+G=(9,16)

● 6G=2(2G)+2G=(16,13)

● 7G=2(2G)+2G+G=(0,6)

● 8G=2(2(2G))=(13,7)

● 9G=2(2(2G)))+G=(7,6)

● 10G=2(2(2G))+2G=(7,11)

● 11G=2(2(2G))+2G=G=(13,10)
● 12G=2(2(2G))+2(2G)=(0,11)
● 13G=2(2(2G))+2(2G)+G=(16,4)
● 14G=2(2(2G))+2(2G)+2G=(9,1)
● 15G=2(2(2G))+2(2G)+2G+G=(3,16)
● 16G=2(2(2(2G)))=(10,11)
● 17G=2(2(2(2G)))+G=(6,14)
● 18G=2(2(2(2G)))+2G=(5,16)
● 19G=2(2(2(2G)))+2G+G=0 (infinite)
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AA

Alice picks x=9
Alice's X=9G = (7,6)

Alice's
k=9Y = 9(3G)=27G= 8G
= (13,7)

Bob picks y=3
Bob's Y = Y=3G = (10,6)

Bob's 
k = 3X= 3(9G)=27G
=(13,7)

X=(7,6)

Y=(10,6)

BB

CC

Elliptic Cure Diffe Hellmann - Example

Y2=X3+2X+2

G=(5,1) n=19
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Elliptic Curve Digital Signature Algorithm 
(ECDSA)
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The mathematic background of ECC is more complex than other 
cryptographic systems
•Geometry, abstract algebra, number theory
ECC provides greater security and more efficient performance than the first 
generation public key techniques (RSA and Diffie-Hellman)
•Mobile systems
•Systems required high security level ( such as 256 bit AES)

Key measure: Encryption strength
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COMPUTATION TIMES OF CURVES WHEN USED 
FOR ECDH ALGORITHM 
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COMPUTATION TIMES OF CURVES WHEN USED 
FOR ECDSA 
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TLS - Preference
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Discussion
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