- f Connect TEHIAIN qc BdREg NnganUhﬂdet

European Union

Designing Secure Web Application

Prof. Dr. M. Ameer Ali

Professor & Chairman

Department of Computer Science & Engineering

Bangladesh University of Business and Technology (BUBT)

h & Ed

r.\ Connect TE’N".CC B§RE3 NgwRanunet

European Union

Overview

 Web applications preseatcomplex seof security issuefor architects, designers, and
developers.

 The most secure arndhckresilientweb applications are those that have daaft from the
ground up with security in minGApplying sound architectural and desigractices,
Incorporatedeployment consideratiommdcorporate security polici¢s

 Presenting set of secure architecture and design guidedarganized by common
application vulnerability category.

\si@Connect :I_EIN".CC B§RE3 Ngﬁquhﬂdet

European Union

Architecture and Design Issues for Web Applications

A Web applications present designers and developers with many challenges:

To To To Io o Do

The stateless nature of HTTP (iteacking peruser sessiostate becomes the
responsibility of the applicatign

Application must be able tdentify the useby using some form afuthentication
Ensureauthentication process secure

Session handling mechanidaor track authenticated users is equally vpetitectec
Preventingparameter manipulation

Preventing disclosuref sensitive data

:-—r
7 rsiaConnect Tremi‘co BERE\';' NORDUnet

European Union

Top Issues need to address with secure design practices

Providing
L secure
Authentcating contiguration
users "
Pravent anding
Nr;m‘::? exceptions Protecting
ipulation sensitive data
Application | Database
Server Server
B A
Protecting
”:;;'a'v‘ Authorizing Auditing and
users logging activity Encrypting or
- and hashing
P;o::sni::g Validating transactions sensitive
hijacking and Input) G
kie replay and authorizing
upstream

attacks identi®

7 A Connect ?_EIN cc B§RE§ NQRDRUh[‘!Et

European Union

e
Web Application Vulnerabilities due to Bad design

Input Validation
Authentication
Authorization
Configuration Management
Sensitive Data

Session Management
Cryptography

Parameter Manipulation
Exception Management

O Auditing and Logging

SOOND oA ©NE

European Union

Vulnerability Category

Input Validation

Authentication
Authorization

Configuration Management

Sensitive Data
Session Management

Cryptography

Parameter Manipulation

Exception Management

Auditing and Logging

o

cooPERATION & E N T E

- . .
;| aConnect T N ‘o (B§RE3 NQVR“DaUh[!det
-_._..-/

Potential Problem Due to Bad Design

Attacks performed by embedding malicious strings in query strings, form fields, cookies, and HTTP headers. These inc
command execution, crosge scripting (XSS), SQL injection, and buffer overflow attacks.

Identity spoofing, password cracking, elevation of privileges, and unauthorized access.
Access to confidential or restricted data, tampering, and execution of unauthorized operations.

Unauthorized access to administration interfaces, ability to update configuration data, and unauthorized access tmtsser
and account profiles.

Confidential information disclosure and data tampering.
Capture of session identifiers resulting in session hijacking and identity spoofing.
Access to confidential data or account credentials, or both.

Path traversal attacks, command execution, and bypass of access control mechanisms among others, leading to inforn
disclosure, elevation of privileges, and denial of service.

Denial of service and disclosure of sensitive system level details.

Failure to spot the signs of intrusion, inability to prove a user's actions, and difficulties in problem diagnosis.

Connect :I_EIN cc B§RE§ NQRDRUh[‘!GEt

European Union

e
1.0 Input Validation

A Practices improve Web application's input validation:
1.01 Assume all input is malicious.
1.02 Centralize approach.
1.03 Do not rely on cliergide validation.
1.04 Be careful with canonicalization issues.
1.05 Constrain, reject, and sanitize your input.

NORDUnet

Connect ¢;7_EIN cc BdREg A AN A D

European Union

e
1.01 Assume all inputs are malicious

A Validateall type ofinput (i.e. it comes from a service, a file share, a user, or a database)
source Is outsidef thetrusted boundaty

A For example
- How do we know that malicious commands are not present if the application call an
external Web service that returns strings?
- When you read data, how do you know whether it is safe if several applications write
shared database?

r\ a2Connect TEIN".CC B§RE3 NnganUhﬂdet

European Union

1.02 Centralize your approach
A Make theinput validationstrategya core elemenof theapplication design
A Consider a centralized approach to validgtfon example, by using common validation an
filtering code in shared libraries.
This ensures that

L . . 4 Pa9S | \iasen
A Validation rules are applied consistently. _)

A It reduces development effort.

. . Br ific Shared
A It helps with future maintenance orSorvco | w f| e \

4

f'"\ SConnect T EINg Cc B§RE§ NngﬂDnUh[!det

oo H A

European Union

e
1.03 Do not rely on client-side validation.
Serverside code should perform its own validation.

Attackersmaybypasdhe clientor shuts offtheclient-side scriptroutines for example, by
disabling JavaScript?

A Use clientside validation to help reduce the number of round trips to the server but do 1
rely on it for security.

To o

Z

N TEIN.:.EC BdREg NORDUnet

Connec‘l' - o Oy Nordic Gateway for Research & Education
(- - N

European Union

1.04 Be careful with canonicalization issues

A Canonicalization is thprocess of converting dat@.its canonical form.

A Data in canonical form is in its most standard or simplest form.

A File paths and URLSs are particularly prone to canonicalization issues and makpovet
exploits are a direct result of canonicalization bugs.

For example, consider the following string that contains a file and path in its canonical forn
c:\tempsomefile.dat

**In the last example, characters have been specified in
hexadecimal form:

%3A is the colon character.

%5C is the backslash character.

%?2E is the dot character.

\si@Connect :I_EIN".CC B§RE3 Ngﬁquhﬂdet

European Union

e
1.04 Be careful with canonicalization issues (Cont’d)
The following strings could also represent the same file.
somefile.dat
c:\tempsubdik.\somefile.dat
c)\ temp somefile.dat
.\somefile.dat
** c%3A%5CemPPo5Csubdifh5C%2E%2ER405Csomefile.dat
We should generally try to avoid designing applications that accept input file names from t
to avoid canonicalization issues.
Consider alternative designs instead. For example, let the application determine the file ne
the user.
If we doneed to accept input file namasake suréhey are strictly formed before making
security decisionsuch as granting or denying access to the specified file.

_— I

Connect T &g ;c BdRE& NQRQ;UhEGEt

European Union

e
1.05 Constrain, reject, and sanitize your input

A The preferred approach talidating inputis to
constrain what we allow from the beginning Make

A It is much easier to validate data for known val A Reject knoan m;”.?;f%f';‘!ﬁ;m
types, patterns, and ranges than it isaiodate | | |
data by looking for known bad characters ot Constrain N Reject L Sanilize l

A When we design the web application, we know B | | | |
what our application expects. The range of val ety format o evarele. st
data is generally a more finite set than potentic cu:ai.;]'::"xf:?ﬁm e
malicious input. However, for defense in depth
we may also want to reject known bad input and Fig: Recommended strategy

then sanitize the input.

Connect .74 E’l\;: Bdegl‘ NORDﬂUI‘IGt

European Union

I
2.0 Authentication

Authentication is the process of determining caller identity. There are three aspects to consider:
1. Identify whereauthentication is requirad the application. It is generally required whenever
trust boundary (includes assemblies, processes, and hosts) is crossed.
2. Validate the calle(Users typically authenticate themselves with user names and passwort
3. ldentify the useon subsequent requests. This requires some foamntbéntication token
Practices improve the Web application's authentication:
2.01 Separate public and restricted areas.
2.02 Use account lockout policies for emgker accounts.
2.03 Support password expiration periods.
2.04 Be able to disable accounts.
2.05 Do not store passwords in user stores.
2.06 Require strong passwords.
2.07 Do not send passwords over the wire in plaintext.
2.08 Protect authentication cookies.

Connect TEIN ‘e BdRE& NQRQUhEdEt

European Union

e
2.01 Separate public and restricted areas

A A public area of the site can be accessed by any user anonymously. Restricted areas
accessed only by specific individuals and the users must authenticate with the site.

A Example: Consider a typical retail Web site. You can browse the product catalog
anonymously. When you add items to a shopping cart, the application identifies you w
session identifier. Finally, when you place an order, you perform a secure transaction
requires you to log in to authenticate your transaction over SSL.

A By partitioning the site into public and restricted access areas,

A Apply separate authentication and authorization rules across the site; and
A Limit the use of SSL.

A To avoid the unnecessary performance overhead associated with SSL, design the sit:

limit the use of SSL to the areas that require authenticated access.

Connect ?_EIN".CC B§RE§ NQRDRUh[‘!GEt

European Union

e
2.02 Use account lockout policies for end-user accounts

A Disable eneuser accounts or write events to a log after a set number of failed logon
attempts.

A If we areusing Windows authenticatipsuch as NTLM or the Kerberos protocol, these
policiescan beconfiguredand appliechutomaticallyby theoperating system

A With Forms authentication, these policies areréisgonsibility of the applicatioand must
beincorporated into the application design

A Be careful that accouitickout policies cannot be abudadienial of servicattacks.

Connect ?_EIN".CC B§RE§ NQRDRUh[‘!GEt

European Union

e
2.03 Support password expiration periods

A Passwords
A should not be static; and
A should be changed as part of routine password maintenance through password
expiration periods.
A Consider providing this type of facility during application design.

HConnect T &I cc B§RE3 NQRQUhgdet

oo

European Union

e
2.04 Be able to disable accounts

A If the system is compromised, being able to deliberately invalidate credentials or disal
accounts can prevent additional attacks.

NORDUnet

Connect ¢;7_EIN cc BdREg A AN A D

European Union

e
2.05 Do not store passwords in user stores

A If we verify passwords, it is not necessary to actually store the passwords. Instead, st
one way hash value and thercampute the hash using the usapplied passwords.

A To mitigate the threat of dictionary attacks against the user store, use strong passwor
Incorporate a random salt value with the password.

Connect Tresmn ie BdREg NORDUnet

[

European Union

e
2.06 Require strong passwords

A Do not make it easy for attackers to crack passwords.

A General practice is to requireranimum of eight characteend a mixture ofippercasand
lowercasecharactersnumbers andspecialcharacters

A Whether we are using the platform to enforce these for us, or we are developing our ¢
validation, this step is necessary to counter binrtee attacks where an attacker tries to
crack a password through systematic trial and error. Use regular expressions to help
strong password validation.

\si@Connect :I_EIN Cc B§RE3 Ngﬁquhﬂdet

European Union

e
2.07 Do not send passwords over the wire in plaintext

* Plaintext passwords sent over a network are vulnerable to eavesdropping. To addres:
threat, secure the communication channel, for example, by using SSL to encrypt the t

\si@Connect :I_EIN Cc B§RE3 Ngﬁquhﬂdet

European Union

I
2.08 Protect authentication cookies

A A stolen authentication cookie is a stolen lagon

A Protect authentication tickets using encrypéma secure communication channels.

A Limit the time intervain which anauthentication tickatemains valid, teounter the
spoofingthreat that can result from replay attacks, where an attacker captures the coo
and uses it to gain illicit access to your site.

A Reducing the cookie timeout does not prevent regitacks but it does limit the amount of
time the attacker has to access the site using the stolen cookie.

Connect ?_EIN".CC B§RE§ NQRDRUh[‘!GEt

European Union

I
3.0 Authorization

Authorization determines

A What the authenticated identity can do and the resources that can be accessed.
The following practices improve the Web application's authorization:

3.01 Use multiple gatekeepers.

3.02 Restrict user access to systemel resources.

3.03 Consider authorization granularity.

Connect TEIN ;c BdRE& NQ,R”Q;Uhgdet

European Union

e
3.01 Use multiple gatekeepers.

A IPSecpolicy might restrict any host apart from a nominated Web server from connectir
a database server.

A 1IS provides web permissions and Internet Protocol/ Domain Name System (IP/DNS)
restrictions.

A NTFS permissions allow us to specify per user access control lists.

A ASP.NET provides URL authorization and File authorization together with principal
permission demands.

By combining these gatekeepers we can develop an effective authorization strategy.

7 o Connect T-e=nn i B§Rl§ NORDUnNet

European Union

e
3.02 Restrict user access to system-level resources.

A System level resources include files, folders, registry keys, Active Directory objects,
database objects, event logs, and so on.

A Use WindowsAccess Control ListéACLS) torestrictwhich users can accesghat
resources and the types of operations that they can perform.

A Pay particulaattentionto anonymous Internet user accounts

A Lock these down with ACLs on resources thaplicitly deny access to anonymous users

Z

7 Connect v o =772 & .Ec Bd RE& Ngﬁeuhﬂdet

cooPERATION & E N T E

European Union

3.03 Consider authorization granularity
There are three common authorization models, each witl

. . . A A Database
varying degrees of granularity and scalability. o | WebSemer [™ Serve
A Impersonation Model: Resource access occurs using ,) Askaien |2 " @

the security context of the caller. Windows ACLSs on]
the secured resources (typically files or tables, or botfr e o
determine whether the caller is allowed to access the pelegaton
resource. Fig: Impersonation Model
A Trusted subsystem Model: Authorization performed Web or Appication S
In theapplication's logical middle tiarsing roles, =
which group together users who share the same i e |
privileges in the application. SR T e

Trust Boundary Application Sarvar

Fig: Trusted subsystem Model

I..-"'

cooPERATION & E N T E

European Union

BdREg NORDUnNet

3.03 Consider authorization granularity (Cont’d)

A Hybrid Model: This is really a hybrid of the two
models described earlier. Callers are mapped to
In the application's logical middle tier, and access
classes and methods is restricted based on role
membership. Downstream resource access is
performed using a restricted set of identities
determined by the current caller's role membersh

L e

Web or Application Database
Senver Sener
Tl % FRole | Trusted service
- 1 identity 1
o«

. b .
i & Role Trustad sarvica

- 2 ideniity 2 =

lgeniity 1 and 2 hava

diffarant pernissions in tha

Fig: Hybrid Model

Connect Tresmn ie BdREg NORDUnet

[

European Union

e
4.0 Configuration Management

A Consider the Web application's configuration management functionality.

A Most applicationsequire interfacethat allow content developers, operators, and
administratorso configure the applicatioand manage items such as Web page content
user accounts, user profile information, and database connection strings.

A If remote administration is supportéxw are theadministration interfaces secufed

The following practices improve the security of your Web application’s configuration

management:

4.01 Secure the administration interfaces.

4.02 Secure the configuration store.

4.03 Maintain separate administration privileges.

4.04 Use least privileged process and service accounts.

¥ A aConnect ;,—E;N ‘e B§Rl§ NORDUnNet

European Union

I
4.01 Secure the administration interfaces

A Configuration management functionality shoalgtessible onlyo authorized operatoend
administrators

A Enforce strong authenticati@ver the administration interfaces, for exampleubiyg
certificates

A Limit or avoidthe use ofemoteadministration if possible.

A Require administrators to log on locally.

A If we need to supporemoteadministrationuse encrypted channefer example, with SSL
or VPN technology, because of the sensitive nature of the data passed over administr
Interfaces.

A Considerlimiting remote administratioto computers on th@ternal networkoy using
IPSecpolicies to further reduce risk.

e o Conmact T fe= B§R5\§ NORDUnet

European Union

e
4.02 Secure the configuration store
« Avoid usingconfiguration filean theapplication's web space

* UsingWindowsACLs or database permissiotizat will secure accede theconfiguration
store

« Avoid storing plaintext secrestich as database connection strings or account credentiz
e Secure the secret items using encryption.

* Restrict accest® theregistry key, file, or tabl¢hat contains the encrypted data.

r\ a2Connect TEIN".CC B§RE3 NnganUhﬂdet

European Union

e
4.03 Maintain separate administration privileges

o If the functionality supportethy thefeaturesf the application'sonfiguration management
varies baseadn therole of theadministrator

« Consider authorizing each role separately by usinglraged authorization.

* For example, the person responsible for updating a site's static content should not
necessarily be allowed to change a customer's credit limit.

Connect :I_EIN cc B§RE§ NQRDRUh[‘!GEt

European Union

4.04 Use least privileged process and service accounts
 An important aspeatf theapplication's configuratiors the
A Processiccountased to run th&Veb serveprocessand
A Serviceaccountaised to accesfownstream resourcandsystems
 Make sure accounts aset up as least privileged
« Example: If an attacker manages to take control of a process, the process identity shc

have very restricted access to the file system and other system resources to limit the
that can be done.

Connect :I_EIN cc B§RE§ NQRDRUh[‘!GEt

European Union

I
5.0 Sensitive Data

The following practices improve your Web application’s security of sensitive per user
data:

5.01 Retrieve sensitive data on demand.

5.02 Encrypt the data or secure the communication channel.

5.03 Do not store sensitive data in persistent cookies.

5.04 Do not pass sensitive data using the HGHET protocol.

Connect TEIN ‘e BdRE& NQRQUthEt

European Union

e
5.01 Retrieve sensitive data on demand

 The preferred approach isteirieve sensitive data on demamhen it is needethstead of
caching it in memory

* For exampleretrieve the encrypted secwhen it is neededlecrypt it use it andthen
clear the memor(variable) used to hold the plaintext secret.

» |If performance becomes an issue, consider the following options:

e Cache the encrypted secret: Retrieve the secret when the application loads and cache
encrypted secret in memory, decrypting it when the application uses it. Clear the plain
copy when it is no longer needed. This approach avoids accessing the data store on ¢
request basis.

e Cache the plaintext secret: Avoid the overhead of decrypting the secret multiple times :
store a plaintext copy of the secret in memory. This is the least secure approach but c
the optimum performance. Benchmark the other approaches before guessing that the
additional performance gain is worth the added security risk

¥ A aConnect ;,—E;N ‘e B§Rl§ NORDUnNet

European Union

5.02 Encrypt the data or secure the communication channel
 If you aresending sensitivdataoverthe networkto theclient, encrypt the datar secure
the channel
A common practice is tose SSlbetween the client and Web server.
e Between serveran increasingly common approach isit@ IPSec
* For securing sensitive data that flows through several intermediaries, for example, We
service Simple Object Access Protocol (SOAP) messages, use message level encryp

7 o Connect T-e=nn i B§Rl§ NORDUnNet

European Union

e
5.03 Do not store sensitive data in persistent cookies

« Avoid storingsensitivedatain persistentookies
 |If you storeplaintextdata, theend users able toseeandmodify the data.
 If you encrypt the data, key management can be a problem.
A For example, if the key used to encrypt the data in the cookie has expired and be
recycled, the new key cannot decrypt the persistent cookie passed by the browse
the client.

h & Ed

\si@Connect ?_EIN".CC B§RE3 NQRDRUI‘IGt

European Union

5.04 Do not pass sensitive data using the HTTP-GET protocol

* Avoid storing sensitive data using the HFGET protocol because tipeotocol uses query
strings to pass data

e Sensitive data cannot be secured using query strings and guery strings are often logg
the server.

\si@Connect :I_EIN Cc B§RE3 Ngﬁquhﬂdet

European Union

e
6.0 Session Management

The following practices improve the security of your Web application's session managen
6.01 Use SSL to protect session authentication cookies.
6.02 Encrypt the contents of the authentication cookies.
6.03 Limit session lifetime.
6.04 Protect session state from unauthorized access.

r\ a2Connect TEIN".CC B§RE3 NnganUhﬂdet

European Union

e
6.01 Use SSL to protect session authentication cookies
* Do not pass authentication cookies over HTTP connections.
« Set the secure cookie property within authentication cookies, which
A Instructs browsers to send cookies back to the server only over HTTPS connectic

BdRE\|§ NORDUnNet

Connec‘l' c;, E’N CC

European Union

6.02 Encrypt the contents of the authentication cookies

* Encrypt the cookie contents even if you are using SSL.
o SSL prevents an attacker viewing or modifying the cookie if he manages to steal it thr

an XSS attack.
* In this event, the attacker could still use the cookie to access your application, but onl

while the cookie remains valid.

r\ a2Connect TEIN".CC B§RE3 NnganUhﬂdet

European Union

e
6.03 Limit session lifetime
* Reduce the lifetime of sessions to mitigate the risk of session hijacking and replay att:
e The shorter the session, the less time an attacker has to capture a session cookie ant
to access your application.

""-‘_

Connect T &I\ ‘e BdRE& NQRQUhgdet

European Union

e
6.04 Protect session state from unauthorized access

A Consider how session state is to be storedopomum performancewve canstore session
statein the Webapplication's process address sp#&tmwvever, this approach has limited
scalability andmplicationsin Web form scenarios, where requests fromstee user
cannot be guaranteed to be handled by the same .d@rtleis scenario, an owf-process
state store on a dedicated state server or a persistent state store in a shared databas
required. ASP.NET supports all three options.

A We should secure the network link from the Web application to stateustows PSecor
SSL to mitigate the risk of eavesdroppi#dso consider how the Web application is to be
authenticated by the state stdvese Windows authenticatiomhere possible to avoid
passing plaintext authentication credentials across the network and to benefit from se
Windows account policies.

e o Conmect T-e=nn fe=c B§R|5\|§ NORDUnet

European Union

e
7.0 Cryptography
The following practices improve your Web application's security when you use cryptogra
7.01 Do not develop your own cryptography.
7.02 Keep unencrypted data close to the algorithm.
7.03 Use the correct algorithm and correct key size.
7.04 Secure your encryption keys.

_— I

Connect T &g ;c BdRE& NQRQ;UhEGEt

European Union

e
7.01 Do not develop your own cryptography

* Cryptographic algorithms and routines are extremely difficult to develop successfully.

 We should use the tried and tested cryptographic services provided by the platform. T
Includes the .NEFramework and the underlying operating system.

Do not develop custom implementations because these frequently result in weak prot

e o Conmact T fe= B§R5\§ NORDUnet

European Union

e
7.02 Keep unencrypted data close to the algorithm

 When passing plaintext to an algorithm, do not obtain the data until you are ready to L
and store it in as few variables as possible.

Connect TEIN ‘e BdRE& NQRQUthEt

European Union

S
7.03 Use the correct algorithm and correct key size

* Choose the right algorithm for the right job

 Make sure you use a key size that provides a sufficient degree of security.

« Larger key sizes generally increase security. The following list summarizes the major algorithms t
with the key sizes that each uses:

« Data Encryption Standard (DES)-64 key (8 bytes)

o TripleDES 128bit key or 192bit key (16 or 24 bytes)

* Rijndael 12856 bit keys (1632 bytes)

« RSA 38416,384 bit keys (482,048 bytes)

* For large data encryption, use the TripleDES symmetric encryption algorithm.

« For slower and stronger encryption of large data, use Rijndael.

 To encrypt data that is to be stored for short periods of time, you can consider using a faster but v
algorithm such as DES.

« For digital signatures, use Rivest, Shamir, and Adleman (RSA) or Digital Signature Algorithm (DS

* For hashing, use the Secure Hash Algorithm (SHA)1.0.

 For keyed hashes, use the Hasised Message Authentication Code (HMAC) SHA1.0.

Connect TEIN ‘e BdRE& NQRQUhEdEt

European Union

e
7.04 Secure your encryption keys

* An encryption key is a secret number used as input to the encryption and decryption
processes.

* For encrypted data to remain secure, the key must be protected.

 If an attacker compromises the decryption key, your encrypted data is no longer secu

» The following practices help secure your encryption keys:

A Use DPAPI to avoid key management: By using DPAPIkey management issue is
handled by the operating systehihe key that DPAPI uses is derived from the pass
that is associated with the process account that calls the DPAPI functions. Use D
pass the burden of key management to the operating system.

A Cycle your keys periodically: Generally, a static secret is more likely to be discove
over time. Questions to keep in mind are: Did you write it down somewhere? Did
the administrator with the secrets, change positions in your company or leave the
company? Do not overuse keys.

\si@Connect :I_EIN".CC B§RE3 Ngﬁquhﬂdet

European Union

e
8.0 Parameter Manipulation

A The following practices help secure your Web application's parameter manipulation:
8.01 Encrypt sensitive cookie state.
8.02 Make sure that users do not bypass your checks.
8.03 Validate all values sent from the client.
8.04 Do not trust HTTP header information.

HConnect T &I cc B§RE3 NQRQUhgdet

oo

European Union

8.01 Encrypt sensitive cookie state.
« Cookiesmaycontainsensitive datauch asession identifiersr datathat isusedas part of

theserverside authorization process
e To protect this type of data from unauthorized manipulatiea,cryptography to encrypt

the contents of the cookie.

7 A Connect ?_EIN cc B§RE§ NQRDRUh[‘!Et

European Union

e
8.02 Make sure that users do not bypass your checks.

« Make sure that useo® not bypasyour checksby manipulating parameters
 URL parameters can be manipulated by end users through the browser address text |
A For example, th&)RL http://www.<YourSite/<YourApp/sessionld=1has a value
of 10 that can be changed to some random number to receive different output.
« Make sure that yoaheck this in serveside codenot in clientside JavaScripwhich can
be disabled in the browser.

NORDUnet

) Connect TE:N cc B?REQ B iy o Wad b w e
European Union

8.03 Validate all values sent from the client.
* Restrictthefieldsthat theusercanenterandmodify andvalidateall values coming from

the client.
 If we have predefined values in your form fields, users can change them and post the

to receive different results.
* Permit only known good valuagherever possible.
A For example, if the input field is for a state, only inputs matching a state postal co

should be permitted.

NORDUnet

J Connect :I_EIN cc B§REg B ey e et e
European Union

8.04 Do not trust HTTP header information.

« HTTP headers areentat thestart of HTTP requesendHTTP responses
« Web application should make surelites not base any security decisionnfarmation in

theHTTP headers
A Because it iasy for an attackéo manipulatehe header.

A For example, theeferer field in theheadercontainghe URL of the Web page from

where the request originated
Do not make any security decisidmased on thealue of the referer field
A For example, to check whether the request originated from a page generated by

Web application, because the field is easily falsified.

aConnect TEIN"-CC B§RE3 NQRQUhgdet

oo

European Union

e
9.0 Exception Management

A The following practices help secure your Web application's exception management:
9.01 Do not leak information to the client.
9.02 Log detailed error messages.
9.03 Catch exceptions.

HConnect T &I cc B§RE3 NQRQUhgdet

oo

European Union

I
9.01 Do not leak information to the client.

* In the event of a failure, do nekpose informatiothat couldead to information
disclosure
A For examplegdo not expose stack trace det#fiat includefunction namesndline
numberdn the case oflebug buildgwhich should not be used on production server
e Return generic error messages to the client

Connec‘l' c;, E’N CC

Nordic Gateway for Research & Edu

BdRE& NORDUnet

European Union

e
9.02 Log detailed error messages.

« Send detailed error messages to the error log.
« Send minimal information to the consumer of the service or application, such as
A a generic error message and custom error log ID that can subsequently be mapp
detailed message in the event logs.
 Make sure that we do not log passwords or other sensitive data.

e o Conmact T fe= B§R5\§ NORDUnet

European Union

e
9.03 Catch exceptions
o Use structureéxception handlin@ndcatch exception conditions
e Doing soavoids leaving the application in an inconsistent steiemay lead to information
disclosure.
It also helpsrotectyour applicatiorfrom denial of service attacks
 Decide how to propagate exceptions internally in the application.
* Give speciatonsideratiorio what occurs at thepplicationboundary

r.\ Connect TE’N Cc B§RE3 NucowRanunet

European Union

e
10.0 Auditing and Logging

A The following practices improve your Web application's security:
10.1 Audit and log access across application tiers.
10.2 Consider identity flow.
10.3 Log key events.
10.4 Secure log files.
10.5 Back up and analyze log files regularly.

Connect ?_EIN".CC B§RE§ NQRDRUh[‘!GEt

European Union

e
10.1 Audit and log access across application tiers
* Audit and log access across the tiers of the application fereprdiation.
« Use a combination of applicatidavel logging and platform auditing features, such as
Windows, IIS, and SQL Server auditing.

Connect TEIN ‘e BdRE& NQRQUhgdet

European Union

S
10.2 Consider identity flow

e Consider how the application will flow caller identity across multiple application tiers. \
have two basic choices.

A We can flow thecaller's identity at the operating system lawsing the Kerberos
protocol delegation.
« This allows us to use operating system level auditing.
* The drawback with this approach is that it affects scalability because it mean
can be no effective database connection pooling at the middle tier.
A We can flow thecaller's identity at the application levariduse trusted identities to
access backnd resourcedVith this approach,
 We have to trust the middle tier and there is a potential repudiation risk. We
generate audit trails in the middle tier that can be correlated withdrackudit
trails. For this, you must make sure that the server clocks are synchronized,
although Microsoft Window2000 and Active Directory do this for you.

oo

aConnect TEIN"-CC B§RE3 NQRQUhgdet

European Union

10.3 Log key events

* The types of events thalhould be loggethcludesuccessfuandfailed logon attempis
modification of dataretrieval of datanetwork communication@andadministrative
functionssuch as the enabling or disabling of logging.

e Logs shouldncludethetime of the event, thécationof the event including theachine

name theidentity of the current usgtheidentity of the procesmsitiating the event, and a
detaileddescriptionof theevent

¥ A aConnect ;,—E;N P B§Rl§ NORDUnNet

European Union

e
10.4 Secure log files

« Secure log files using Windows ACLs and restrict access to the log files.

A This makes it more difficult for attackers to tamper with log files to cover their trac
* Minimize the number of individuals who can manipulate the log files.
* Authorize access only to highly trusted accounts such as administrators.

Connect TEIN ;c BdRE& NQ,R”Q;Uhgdet

European Union

e
10.5 Back up and analyze log files regularly

« There's no point in logging activity if the log files are never analyzed.

* Log files should be removed from production servers on a regular basis.

« The frequency of removal is dependent upon the application's level of activity.

« Design of application should consider the way that log files will be retrieved and move
offline servers for analysis.

* Any additional protocols and ports opened on the Web server for this purpose must b
securely locked down.

Connect ?_EIN".CC B§RE§ NQRDRUh[‘!GEt

European Union

Deployment Considerations
During the application design phase,
A Reviewthe corporateecurity policies and procedunaith theinfrastructurevhere

application is to be deployed on.
A Since the target environment is rigideb application design must reflect the restrictions
Sometimes design tradeoffs are required, for example, because of protocol or port

restrictions, or specific deployment topologies.
A Identify constrairg to avoid surprises later aimd/olve membersf thenetwork and

Infrastructure teamt® help with this process.

NORDUnet

Nordic Gateway for Research & Edu

European Union

e
Deployment aspects that require design time consideration

Application Secunity I
Host Secunty I

Deployment Topologies
Local | | Remote
Tier Tier

Network Infrastructure Security

Security Policies and Procedures

Router

Firewall I[Switch

M s oconnect Ty ie=e B§R5\§ NORDUnet

European Union

Security Policies and Procedures
 Determinesvhat the applications are allowed toauwdwhat the users of the application

are permitted to do
* Definerestrictionsto determine what applications and users are not allowed to do.
 |dentify and work within the framewordefined by the corporate security polieyile
designing the applicatiorie make sure you doot breach policghat might prevent the

application being deployed.

A
A

oo I Io Po

I...

Connect T EIrNg :cc (BEREQ NQRDRUh[!det
-__..-/

cooPERATION & E N T E

European Union

Network Infrastructure Components

Understand theetwork structurg@rovided by theéarget environment
Understand theaseline security requirements of the netwinrterms offiltering rules port restrictionssupported
protocols and so on;
ldentify how firewalls andirewall policiesare likely toaffect the application's design and deploym&here may be

A Firewalls toseparate the Internédcing applications from the internal network

A Additionalfirewalls in front of the database

A These camffectthe possible communication ports and, therefanghenticatioroptionsfrom the Web server to

remote applicatioanddatabasservers.
Considemvhat protocolsports andservicesareallowed to access internal resourtresn theWeb serverin the
perimeter network.
Identify theprotocolsandportsthat theapplication design requir@sdanalyzethe potentiathreatsthatoccurfrom
opening new porter using new protocols.
Communicate and record any assumptions made about network and application layer security and which compon:
handle what.
Pay attention to the security defenses that your application relies upon the network to provide.
Consider themplicationsof achange in network configuration

7 o Connect T-e=nn i B§Rl§ NORDUnNet

European Union

e
Deployment Topologies
 Understand web application's deployment topology
* Figure outwhetheremote application tias akey consideratiothat must beéncorporated
In the design
 If there have a remote application tier,
AHow to secure the netwobletweerservers to address the network
AEavesdropping (spying) threat
AEnsure privacy and
AEnsure integrity for sensitive data.
e Considendentity flow and theaccounts used for network authenticatimen the
application connects to remote servers

Nordic Gateway for Research & Edu

-': Bdmi;! NORDUnNet

Connect 7 €E<Irg

[

European Union

Intranet, Extranet, and Internet

Present design challenges:
Questions that we should consider include:
A How will we flow caller identity through multiple application tiers to bagkd resources?

A Where will we perform authentication?
A Can we trust authentication at the front end and then use a trusted connection to acce

backend resources?
A In extranet scenarios, we also must consider whether we trust partner accounts.

Connect TEIN ;c BdRE& NQ,R”Q;Uhgdet

European Union

e
Summary

e Security should permeate every stage of the product development life cycle and it shc
a focal point of application design.

e Pay particular attention to the design of a solid authentication and authorization strate

* Also remember that the majority of application level attacks rely on maliciously formec
Input data and poor application input validation.

e The guidance presented in this chapter should help you with these and other challenc
aspects of designing and building secure applications.

