
1

Kasun De Zoysa

CybersecurityCybersecurity

Web ApplicationsWeb Applications

Department of Communication and Media Technologies
University of Colombo School of Computing

University of Colombo
Sri Lanka

2

TLS and Deep Packet Inspection

3

4

POODLE

The POODLE attack (which stands for
"Padding Oracle On Downgraded Legacy
Encryption") is a man-in-the-middle exploit
which takes advantage of Internet and
security software clients' fallback to SSL
3.0.

If attackers successfully exploit this
vulnerability, on average, they only need to
make 256 SSL 3.0 requests to reveal one
byte of encrypted messages.

5

Media File Jacking

6

Life Cycle of the Data

7

Securing Web Application

• Creating a Web application is easy, but creating
a secure Web application is hard and tedious.

• Because of the multi-tiered architecture,
security flaws may appear at many levels.

• You need to secure your database, your server,
your application, and your network.

• Result: To create a secure Web application,
you need to examine every layer.

8

Application Layer

• SQL Injection

• Cross-Site-Scripting (XSS)

• Cross-Site Request Forgery(CSRF)

• Authentication Breakdown

• Unvalidated Input

User Layer
• Phishing

• Key-logging

9

Network Layer

• Packet-Sniffing

• Man-In-The-Middle Attacks (MITM)

• DNSAttack

Sever Layer

• Denial-of-Service (DoS)

• OS Exploitation

10

User Requirement

• Authentication: You want to know who you
are communicating with.

• Authorization (Access Control): User must
have access to only those resources that
they are entitled to.

• Confidentiality: You want to keep
information secret (e.g., credit card number).

• Integrity: You want to know that a message
has not been modified in transit.

• Non-repudiation: If someone has sent a
message, it should be impossible to deny it
later (legal implications).

Open Web Application Security Project

http://www.owasp.org
– Open group focused on understanding and

improving the security of web applications and web
services!

– Hundreds of volunteer experts from around the
world

Your Code is Part of Your Security Perimeter

F
irew

all

Hardened OS

Web Server

App Server

F
irew

all

D
at

ab
as

es

L
eg

ac
y

S
ys

te
m

s

W
eb

 S
er

vi
ce

s

D
ir

ec
to

ri
es

H
u

m
an

 R
es

rc
s

B
il

li
n

g

Custom Developed
Application Code

APPLICATION
ATTACK

You can’t use network layer protection (firewall, SSL, IDS, hardening)
 to stop or detect application layer attacks

N
et

w
o

rk
 L

ay
er

A
p

p
li

ca
ti

o
n

 L
ay

er

Your security “perimeter” has huge
holes at the application layer

Top Ten Most Critical
Web Application Security Vulnerabilities

2013

– Cross-site scripting (XSS)
– Injection flaws
– Unvalidated input
– Buffer overflows
– Error handling
– Broken authentication and session management

– Broken access control
– Insecure storage
– Denial of service
– Insecure configuration management

14

The new OWASP Top 10 2017

A1: Injection

A2: Broken authentication

A3: Sensitive data exposure (privacy)

A4: XML external entities (new)

A5: Broken access control

A6: Security misconfiguration

A7: Cross-site scripting (XSS)

A8: Deserialization (new)

A9: Using known vulnerable components

A10: Insufficient logging and monitoring (new)

15

A1: Injection

Injection happens when an attacker injects a bit of
code to trick an application into performing unintended
actions.

The most common and well-known injection attack is
SQL injection (SQLi), where an attacker inserts an
SQL statement that, for example, exposes the contents
of a database table.

LDAP injection is a similar type of attack against a
directory system.

OWASP recommends you check incoming requests to
determine their trustworthiness, and keep untrusted
data separated from the systems that run your
application.

16

SQL Injections

Problem: Client inputs SQL code using input parameters
(e.g. in a form). These parameters are then used to
dynamically construct SQL queries.

Consequences:

• Loss of Confidentiality: Attackers can access sensitive data.

• Authentication & Authorization: Attackers can gain access to

privileged accounts or systems without passwords.

• Integrity: Attackers can change the information stored in the

database.

17

SQL Injection

18

SQL Injection

• Everything after the -– is ignored by the
database, since it is marked as a comment.
The result is that the client has logged in as
the admin user without knowing the password.

19

SQL Injection

20

 Unvalidated Input

• This is a HTML form which is about to submit a book
purchase order. The price field is used to ensure that the
price of the currently chosen book is passed with the
order.

• The client can use web proxy and change the form and
edit the value of the price input.

• Seems like an incredibly stupid way to build a Web app,
but there are actually apps out there that are built like
this, and even worse, there are books available that
teach people to do it like this!

21

 Unvalidated Input

• Result: Client-side validation is useful for performance
reasons, but useless from a security point of view.

• Never trust any input from the user, and never trust
client side input validation!

• All parameters must be validated on the server side
before they are used.

• Positive filtering is better than negative filtering!

• Good design would involve a library of functions that
provide the necessary checks.

22

Prevention

• Parameterized SQL statements: i.e.,
PreparedStatements Parameter values are
quoted. This preserves intent of the query.

• Use Stored Procedures: (but implement this
carefully).

• Escape user-input: All user-supplied input should
be escaped (e.g. using double quotes).

• Whitelisting (Positive filtering): Specify a set of
characters that are allowed and everything else is
rejected.

• Privilege Settings: Give least privilege to your
application (only DB reads, writes only where
required, use non-admin accounts).

23

A2: Broken Authentication

Formerly “Broken authentication and session
management.” You know the user credentials
of people accessing your systems, but do you
know who is actually behind the keyboard?

Attackers can hijack user identities and hide
behind genuine user IDs to gain easy access to
your data and programs.

Implement strong authentication and session
management controls, and ensure your users
are who they say they are.

24

 Broken Authentication

• Disallow weak passwords

• Using a stronger hash algorithm

• Salting the passwords (salt the pass, not pass
the salt)

• Use HTTPS for encrypting session ids

• Do not expose credentials in untrusted locations
(hidden fields, cookies, urls) Implement account
lockouts

• Implement MultiFactor Authentication

25

A3: Sensitive Data Exposure

Unintended data display is a serious
problem to anyone operating a web
application that contains user data.

Although OWASP points out that the full
perils of insecure data extend well beyond
the scope of the OWASP Top 10, they do
recommend a handful of minimum steps—
among them, encrypting all sensitive data
at rest and in transit and discarding
sensitive data as soon as you can.

26

Insecure storage

Causes

• Insecure storage of password hash (SQL
injection).

• Weak hashing algorithms employed (e.g.
LinkedIn used SHA-1).

• Faulty session management (session ids
exposed).

• Log files

Sensitive Data - Illustrated

Custom Code

A
cc

o
u

n
ts

F
in

a
n

ce

A
d

m
in

is
tr

at
io

n

T
ra

n
s

ac
ti

o
n

s

C
o

m
m

u
n

ic
at

io
n

K
n

o
w

le
d

g
e

 M
g

m
t

E
-C

o
m

m
er

ce

B
u

s.
 F

u
n

ct
io

n
s

1

User enters credit card
number in form

2Error handler logs CC details
because merchant gateway is

unavailable

4
Malicious insider steals 40
million credit card
numbers

Log files

3Logs are accessible to all
members of IT staff for

debugging purposes

28

A4: XML External Entities (XXE)

XML processors are often configured to
load the contents of external files
specified in an XML document.

An attacker can exploit this capability by
having the XML processor return
contents of local files, access files on
other systems that trust the attacked
system, or even create executable code.

OWASP recommends configuring your
XML processor to turn this capability off.

29

A5: Broken Access Control

This vulnerability combines the vulnerabilities
“Missing function level access control” and
“Insecure direct object references” from the 2013
list.

Broken access control occurs when users can
perform functions above their levels or gain
access to other users’ information.

OWASP advocates several methods to secure
your applications, including establishing “deny by
default” rules to allow function access only to
users you trust and implementing access control
checks for each user accessible object (such as
files, webpages, and other information).

30

 Session Management

Poor management of session IDs can lead to
different attacks such as:

• Cross-Site Request Forgery (CSRF)

• Session spoofing and hijacking

• Broken Authentication

• Privilege Escalation

• Sensitive Data Leakage

• ... and many more!

31

 Session Management

• Therefore, the session identifier must be considered
as an important asset to secure ... following some of
the protection plans below can avoid security threats:

• Implementing Strict Timeouts (Idle, Absolute,
Renewal).

• Session-ID must be renewed when an authentication
state is passed (i.e. on logging in and logging out).

• Forcing Session Logout when client window is
closed.

• Disallowing cross-tab shared sessions.

• Ensuring session IDs cannot be easily guessed.

• Use the framework's session id generator.

• Check for authentication for privileged operations.

32

 Cookie Management

• Proper Cookie Management: Session IDs are stored on
the browser side in cookies. Therefore, cookies should
be managed properly ensure security of sessions.

• Use "Domain" and "Path" attributes to restrict the scope
of cookies to narrow subdomains.

• Use "Secure" attribute to force browsers to send
cookies over HTTPS.

• Use "HttpOnly" attribute to prevent scripts from
accessing the cookies (limited security).

• Use "X-XSS-Protection" header to allow browsers to
detect reflected XSS attacks.

• Use "Content-Security-Policy" headers to instruct
browsers to only load resources from whitelisted
locations.

33

A6: Security Misconfiguration

“Security misconfiguration” is a general
reference to application security systems
that are incomplete or poorly managed.

Security misconfiguration can occur at
any level and in any part of an
application, so it’s both highly common
and easily detectable.

There are myriad ways in which you may
be vulnerable to software
misconfiguration.

34

A7: Cross-site Scripting (XSS)

An XSS vulnerability extends the trust a user has
given a specific site to a second, potentially
malicious site.

Users generally permit trusted sites to perform
certain actions. But malicious actors can modify
a page on a trusted site to interact with an
untrusted site, exposing sensitive data or
spreading malware.

XSS vulnerabilities are common, but they’re not
difficult to remediate.

Separate untrusted, user-inputted data from
active content in your webpage (for example,
hyperlinks). And don’t rely on input validation.

35

Cross Site Scripting

An attacker attaches a script with an HTTP
response. The script executes with privileges
available to the responding web application and
the attacker is able to access privileged
information only available to the user or the web
application.

• Reflected XSS attack: Using a constructed URL
or results page.

• Stored XSS attack: Using POST to store the bad
URL inside a comment/forum. One possible use
is to get access to cookies belonging to clients of
the Web page (Cross Site Request Forgery).

36

Cross Site Scripting

37

Cross Site Scripting

Since cookies often contain authentication information, this could allow the attacker to
impersonate the victim.

38

Prevention

• Filter all input parameters from HTTP GET and POST

• Characters with special meaning in HTML and JavaScript, e.g.,
<, >, (,), #, & should be removed or substituted (e.g., <
becomes <) ... This may also require filtering all types of active
content (JavaScript, ActiveX, etc.).

• But it’s easy to forget something, so it’s better to specify what
characters are allowed, e.g., [A-Za-z0-9]. i.e. a positive filtering
approach works best!

• Positive filtering: Specify what is allowed, anything that does
not match is rejected.

• Negative filtering: Specify what is not allowed, everything else
goes.

• Make sure that the client and server agree on the character set

(Unicode, UTF-8).

39

 Cross Site Request Forgery (CSRF)

• Send a victim with a specially-crafted URL
that contains a malicious request for a target
site.

• Takes advantage of the fact that the victim
may be authenticated to the target site to
perform privileged operations.

• The attacker gains access to cookies and the
web application cannot distinguish between a
legitimate request and an attacker's request.

• If the victim is an admin, then the entire site
could be compromised as the attacker can
gain access to victim's credentials.

40

Prevention

• Checking the "Referrer" header in the request.

• Implementing secure Session Management

Prevention.

• Using a secret cookie will NOT prevent CSRF
However, a synchronizer token appended to the
URL will make it difficult for an attacker to spoof
the URL.

• Implementing some form of Challenge-Response
(e.g. CAPTCHA) on high-value functions.

41

A8: Insecure Deserialization

Serialization is used to turn an object into data that
can be sent somewhere or stored.

In this way, the object can be recreated in the same
state by another system and/or at another time via
the process of deserialization.

An attacker could provide an object that, when
deserialized, gives the attacker access privileges or
runs malicious code.

This vulnerability is difficult to exploit, but it can also
be difficult to detect.

OWASP recommends restricting the types of
objects to be deserialized, or not deserializing
untrusted objects at all.

42

A9: Using components with
known vulnerabilities

Open source development practices drive
innovation and reduce development costs.

But despite the benefits of open source
software, the 2018 Open Source Security
and Risk Analysis found that significant
challenges remain in security and
management practices.

It’s critical that you gain visibility into and
control of the open source components in
your applications and Docker containers.

43

A10: Insufficient Logging and
Monitoring

Sufficient logging and monitoring can’t
prevent malicious actors from launching an
attack.

But without it, you might find it difficult to
detect attacks, shut them down, and
determine the scope of the damage.

Insufficient logging and monitoring is
common. But it’s also difficult to detect.
Even if your logs are detailed enough to
reveal an attack in progress, there’s no
guarantee that the systems put in place to
monitor those logs are working.

Learning with WebGoat

45

DiscussionDiscussionDiscussionDiscussion

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	What is an OWASP?
	Your Code is Part of Your Security Perimeter
	Top Ten Most Critical Web Application Security Vulnerabilities
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Insecure Storage Illustrated
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Learning with WebGoat
	Questions?

